• 제목/요약/키워드: Simulated Distance/Velocity

검색결과 57건 처리시간 0.019초

Swirl이 있는 축대칭 연소기의 난류연소유동 해석 (Simulation of Axisymmetric Flows with Swirl in a Gas Turbine Combustor)

  • 신동신;임종수
    • 한국연소학회지
    • /
    • 제5권1호
    • /
    • pp.55-66
    • /
    • 2000
  • A general purpose program for the analysis of flows in a gas turbine combustor is developed. The program uses non-staggered grids based on finite volume method and the cartesian velocities as primitive variables. A flow inside the C-type diffuser is simulated to check the boundary fitted coordinate. The velocity profiles at cross section agree well with experimental results. A turbulent diffusion flame behind a bluff body is simulated for the combustion simulation. Simulated results show good agreement with experimental data. Finally, a turbulent flow with swirl in a gas turbine combustor was simulated. The results show two recirculating region and simulated velocity fields agree well with experimental data. The distance between two recirculating regions becomes shorter as swirl angle increases. Swirl angle changes angular momentum and streamlines in flow fields.

  • PDF

용사법에 의한 용사층의 형성과 기계적 성질에 관한 연구 (A study on the formation and mechanical properties of the spray deposits by thermal spray)

  • 최기영;박동환;김명호
    • Journal of Welding and Joining
    • /
    • 제7권3호
    • /
    • pp.55-62
    • /
    • 1989
  • Variation of the spray droplet velocity with spraying distance and the microstructural characteristics of spray deposits fromed by oxy-fuel thermal spraying with Ni-base alloy powder contained chrome boride for hard facing were examined. Measurements of spray droplet velocity as a function of distance from the nozzle tip were inexcellent agreement with computer simulated predictions. Optimum condition for thermal spray deposits in this experiment was found to be under #10kg/cm^2$ of acceleration gas pressure with 15cm of spraying distance. Fine microstructure and higher microhardness of the initial part of the deposits due to rapid solidification were found to be able to maintained in a thickness up to 0.4mm, and this initial microstructure and properties could be maintained throughout the thickness of a thick spray deposits by performing the multipass spraying with 0.4mm thickness of each pass.

  • PDF

차 대 보행자 충돌시 사고해석 모델개발 (Development of Accident Analysis Model in Car to Pedestrian Accident)

  • 강대민;안승모;안정오
    • 한국자동차공학회논문집
    • /
    • 제18권3호
    • /
    • pp.104-109
    • /
    • 2010
  • The fatality of pedestrian accounts for about 21.2% of all fatality at 2007 year in Korea. In car to pedestrian accident it is very important to inspect the throw distance of pedestrian after collision for exact reconstructing of the accident. The variables that influence on the throw distance of pedestrian can be classified into the factors of vehicle and pedestrian, and road condition. It was simulated by PC-CRASH, a kinetic analysis program for a traffic accident in sedan type vehicle and SPSS program was used for regression analysis. From the results, the throw distance of pedestrian increased with the increasing of vehicle velocity, and decreased with the increasing of impact offset. Also it decreased with the increasing of velocity of pedestrian at accident, and throw distance at the road condition of wet was longer than that at dry condition. Finally, the regression model of sedan type vehicle on the throw distance of pedestrian was as follows; $$dist_i=2.39-0.11offset_i+0.59speed_i-545height_i-0.25walk_i+2.78wet_i+{\epsilon}_i$$.

한반도 남부 지진의 지역 규모식 (The ML scale in southern Korea)

  • 홍태경
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.73-80
    • /
    • 2000
  • The distance correction term -logA0 of the local magnitude scale was estimated for earthquakes in southern Korea using linear least-squares inversion and interpolation scheme. Total 1054 short-period velocity seismograms from 107 local events recorded at hypocentral distances ranging from 10 to 480 km were used in this study. Simulated Wood-Anderson amplitudes were obtained from velocity seismograms with use of revised Wood-Anderson instrument response with static magnification 2080, damping factor 0.7, and natural period 0.8 sec. The estimated distance correction term for southern Korea is found to be -logA0=1.137 log(r/17) + 0.001159(r-17) + 20, where r is hypocentral distance in kilometers. The attenuation rate of this distance correction term falls between those of southern California and eastern North America.

  • PDF

VST 및 FPGA를 이용한 전자표적 생성 및 신호 모의장치 개발 (The Development of the Real Time Target Simulator for the RF Signal of Electronic Warfare using VST and FPGA)

  • 송상헌
    • 한국군사과학기술학회지
    • /
    • 제26권4호
    • /
    • pp.324-334
    • /
    • 2023
  • In this paper, the target simulator for RF signals was developed by using VST(Vector Signal Transceiver) and set by real-time signal processing SW programs. A function to process RF signals using FPGA(Field Programmable Gate Array) board was designed. The system functions capable of data processing, raw signals monitoring, target signals(simulated range, velocity) generating and RF environments data analyzing were implemented. And the characteristics of modulated signal were analyzed in RF environment. All function of programs for processing RF signal have options to store signal data and to manage the data. The validity of the signal simulation was confirmed through verification of simulated signal results.

다중 이동 로봇의 중앙 감시에 의한 충돌 회피 동작조정 방법 (Method for Collision Avoidance Motion Coordination of Multiple Mobile Robots Using Central Observation)

  • 고낙용;서동진
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권4호
    • /
    • pp.223-232
    • /
    • 2003
  • This paper presents a new method driving multiple robots to their goal position without collision. Each robot adjusts its motion based on the information on the goal location, velocity, and position of the robot and the velocity and position of the .other robots. To consider the movement of the robots in a work area, we adopt the concept of avoidability measure. The avoidability measure figures the degree of how easily a robot can avoid other robots considering the following factors: the distance from the robot to the other robots, velocity of the robot and the other robots. To implement the concept in moving robot avoidance, relative distance between the robots is derived. Our method combines the relative distance with an artificial potential field method. The proposed method is simulated for several cases. The results show that the proposed method steers robots to open space anticipating the approach of other robots. In contrast, the usual potential field method sometimes fails preventing collision or causes hasty motion, because it initiates avoidance motion later than the proposed method. The proposed method can be used to move robots in a robot soccer team to their appropriate position without collision as fast as possible.

Heaps 모델을 이용한 천수만 해역의 조류해석 (Analysis of Tidal Current for Cheonsu Bay Using Heaps Model)

  • 박영기
    • 한국환경과학회지
    • /
    • 제4권2호
    • /
    • pp.245-251
    • /
    • 1995
  • Generally, It is Introduced to well-known other models without considering tidal current of the field. The paper presents field measurements and numerical model solving velocity field of Cheonsu Bay by two-dimensional tidal model. It was proved that this scheme is easy to handle complex topography. Computed results is represented characteristics of tidal current for Cheonsu Bay. The results of the study can be summarized as follows ; 1. Tide form number has 0.21 value. Tidal range estimated 630.3 cm on spring, 454.1 cm on mean and 277.9 cm on neap, respectively 2. Tidal current has semi-diurnal form. Distance of traveling observed 16.6 km on flood and 15.5 km on ebb. 3. Tidal velocity showed reversing current. It was found that tidal velocity above 100 cm/sec is about 20 %. 4. Computed results are in good agreement with the observed data. Applying the algorithm to Cheonsu Bay, velocity fields and dry bank phenomena are simulated well in spite of complex topography. 5. An advanced study on the effects of open boundary conditions should be continuously performed.

  • PDF

Optimization and investigations of low-velocity bending impact of thin-walled beams

  • Hossein Taghipoor;Mahdi Sefidi
    • Steel and Composite Structures
    • /
    • 제50권2호
    • /
    • pp.159-181
    • /
    • 2024
  • In the present study, the effect of geometrical parameters of two different types of aluminum thin-walled structures on energy absorption under three-bending impact loading has been investigated experimentally and numerically. To evaluate the effect of parameters on the specific energy absorption (SEA), initial peak crushing force (IPCF), and the maximum crushing distance (δ), a design of experiment technique (DOE) with response surface method (RSM) was applied. Four different thin-walled structures have been tested under the low-velocity impact, and then they have simulated by ABAQUS software. An acceptable consistency between the numerical and experimental results was obtained. In this study, statistical analysis has been performed on various parameters of three different types of tubes. In the first and the second statistical analysis, the dimensional parameters of the cross-section, the number of holes, and the dimensional parameter of holes were considered as the design variables. The diameter reduction rate and the number of sections with different diameters are related to the third statistical analysis. All design points of the statistical method have been simulated by the finite element package, ABAQUS/Explicit. The final result shows that the height and thickness of tubes were more effective than other geometrical parameters, and despite the fact that the deformations of the cylindrical tubes were around forty percent greater than the rectangular tubes, the top desirability was relevant to the cylindrical tubes with reduced cross-sections.

공기 저항과 바람의 영향을 고려한 대기에서의 유체입자의 3차원 궤적 (Three-Dimensional Trajectory of a Fluid Particle in Air with Wind Effects and Air Resistance)

  • 이동렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권4호
    • /
    • pp.797-808
    • /
    • 2001
  • Three-dimensional trajectory of fluid particle is simulated by a particle motion, which is able to examine the influences of changes in the several parameters. To calculate the trajectory of a particle, the Runge-Kutta method was utilized. The use of a projectile of particles for the trajectory of liquid jet has been shown to be useful to estimate the influence of different operating parameters such as best particle diameter, density of liquid body, initial take-off velocity, wind velocity, cross wind velocity, take-off angle, and base angle for a released flow from the nozzle. The results give the trajectories of various types of particle of body and at different elevations, base angles, wind velocities and densities of liquid body. The trajectories in a vacuum show that air resistances decreases both the distance and the maximum height of a projectile, and also explain that the termination time is also reduced in air. In addition, the maximum distance in the x direction was obtained with take-off angles from 30 degrees to 45 degrees in still air and the projectile of particles was highly effected by wind and cross wind. Clearly, a particle has to be so positioned as to take the optimum possible advantage of the wind if the maximum distances is requested. The wind astern increased the maximum distances of x direction compared with the wind ahead. Finally, it is possible to optimize the design of pump by using these results.

  • PDF

Local Collision Avoidance of Multiple Robots Using Avoidability Measure and Relative Distance

  • Ko, Nak-Yong;Seo, Dong-Jin;Kim, Koung-Suk
    • Journal of Mechanical Science and Technology
    • /
    • 제18권1호
    • /
    • pp.132-144
    • /
    • 2004
  • This paper presents a new method driving multiple robots to their goal position without collision. To consider the movement of the robots in a work area, we adopt the concept of avoidability measure. The avoidability measure figures the degree of how easily a robot can avoid other robots considering the velocity of the robots. To implement the concept to avoid collision among multiple robots, relative distance between the robots is proposed. The relative distance is a virtual distance between robots indicating the threat of collision between the robots. Based on the relative distance, the method calculates repulsive force against a robot from the other robots. Also, attractive force toward the goal position is calculated in terms of the relative distance. These repulsive force and attractive force are added to form the driving force for robot motion. The proposed method is simulated for several cases. The results show that the proposed method steers robots to open space anticipating the approach of other robots. In contrast, since the usual potential field method initiates avoidance motion later than the proposed method, it sometimes fails preventing collision or causes hasty motion to avoid other robots. The proposed method works as a local collision-free motion coordination method in conjunction with higher level of task planning and path planning method for multiple robots to do a collaborative job.