• Title/Summary/Keyword: Simulated Annealing Algorithm

Search Result 412, Processing Time 0.026 seconds

Development of Design System for Multi-Stage Gear Drives Using Simulated Annealing Algorithm (시뮬레이티드 어닐링을 이용한 다단 치차장치의 설계 시스템 개발)

  • 정태형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.464-469
    • /
    • 1999
  • Recently, the need for designing multi-stage gear drive has been increased as the hear drives are used more in the applications with high-speed and small volume. The design of multi-stage gear drives includes not only dimensional design but also configuration design of various machine elements. Until now, however, the researches on the design of gear drives are mainly focused on the single-stage gear drives and the design practices for multi-stage gear drives, especially in configuration design activity, mainly depend on the experiences and 'sense' of the designer by trial and error. We propose a design algorithm to automate the dimension design and the configuration design of multi-stage gear drives. The design process consists of four steps. The number of stage should be determined in the first step. In second step, the gear ratios of each reduction stage are determined using random search, and the ratios are basic input for the dimension design of gears, which is performed by the exhaustive search in third step. The designs of gears are guaranteed by the pitting resistance and bending strength rating practices by AGMA rating formulas. In configuration design, the positions of gears are determined to minimize the volume of gearbox using simulated annealing algorithm. The effectiveness of the algorithm is assured by the design example of a 4-stage gear drive.

  • PDF

Optimal Compensation of Differential Column Shortening in Tall Buildings for Multi Column Groups (고층건물의 멀티 기둥그룹에 대한 부등기둥축소량의 최적보정기법)

  • Kim, Yeong-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.2
    • /
    • pp.189-197
    • /
    • 2008
  • This study presents optimal compensation algorithm of differential column shortening for more than two column groups. The proposed algorithm produces the minimum story groups and their compensation thicknesses which satisfy constraint conditions on performance and construction and enables not only the relative compensation but also the mixed compensation considering absolute shortening. The simulated annealing algorithm is used as the main optimization technique. The applicability of the proposed algorithm was verified by applying it to the 61-storey building where compensation of differential column shortening had already been performed. Using, the proposed algorithm compensation was performed easily and the number of compensation was less than the field method.

Development of a novel reconstruction method for two-phase flow CT with improved simulated annealing algorithm

  • Yan, Mingfei;Hu, Huasi;Hu, Guang;Liu, Bin;He, Chao;Yi, Qiang
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1304-1310
    • /
    • 2021
  • Two-phase flow, especially gas-liquid two-phase flow, has a wide application in industrial field. The diagnosis of two-phase flow parameters, which directly determine the flow and heat transfer characteristics, plays an important role in providing the design reference and ensuring the security of online operation of two-phase flow system. Computer tomography (CT) is a good way to diagnose such parameters with imaging method. This paper has proposed a novel image reconstruction method for thermal neutron CT of two-phase flow with improved simulated annealing (ISA) algorithm, which makes full use of the prior information of two-phase flow and the advantage of stochastic searching algorithm. The reconstruction results demonstrate that its reconstruction accuracy is much higher than that of the reconstruction algorithm based on weighted total difference minimization with soft-threshold filtering (WTDM-STF). The proposed method can also be applied to other types of two-phase flow CT modalities (such as X(𝛄)-ray, capacitance, resistance and ultrasound).

Simulated Annealing Algorithms for Operation Sequencing in Nonlinear Process Planning (비선형공정계획에서 가공순서 결정을 위한 시뮬레이티드 어닐링 알고리듬)

  • Lee, Dong-Ho;Dimitris, Kiritsis;Paul, Xirouchakis
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.3
    • /
    • pp.315-327
    • /
    • 2001
  • This paper considers the problem of operation sequencing in nonlinear process planning, which is the problem of selecting and sequencing operations required to produce a part with the objective of minimizing the sum of operation processing costs and machine, setup and tool change costs. Main constraints are the precedence relations among operations. The problem can be decomposed into two subproblems: operation selection and operation sequencing. We suggest four simulated annealing algorithms, which solve the two subproblems iteratively until a good solution is obtained. Here, the operation selection problem can be solved using a shortest path algorithm. Application of the algorithms is illustrated using an example. Also, to show the performances of the suggested algorithms, computational experiments were done on randomly generated test problems and the results are reported. In particular, one of the suggested algorithms outperforms an existing simulated annealing algorithm.

  • PDF

Simulated squirrel search algorithm: A hybrid metaheuristic method and its application to steel space truss optimization

  • Pauletto, Mateus P.;Kripka, Moacir
    • Steel and Composite Structures
    • /
    • v.45 no.4
    • /
    • pp.579-590
    • /
    • 2022
  • One of the biggest problems in structural steel calculation is the design of structures using the lowest possible material weight, making this a slow and costly process. To achieve this objective, several optimization methods have been developed and tested. Nevertheless, a method that performs very efficiently when applied to different problems is not yet available. Based on this assumption, this work proposes a hybrid metaheuristic algorithm for geometric and dimensional optimization of space trusses, called Simulated Squirrel Search Algorithm, which consists of an association of the well-established neighborhood shifting algorithm (Simulated Annealing) with a recently developed promising population algorithm (Squirrel Search Algorithm, or SSA). In this study, two models are tried, being respectively, a classical model from the literature (25-bar space truss) and a roof system composed of space trusses. The structures are subjected to resistance and displacement constraints. A penalty function using Fuzzy Logic (FL) is investigated. Comparative analyses are performed between the Squirrel Search Algorithm (SSSA) and other optimization methods present in the literature. The results obtained indicate that the proposed method can be competitive with other heuristics.

An Evolutionary Hybrid Algorithm for Control System Analysis

  • Sulistiyo;Nakao Zensho;Wei, Chen-Yen
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.535-538
    • /
    • 2003
  • We employ Genetic Programming (GP) which is optimized with Simulated Annealing (SA) to recognize characteristic of a plan. Its result is described in Laplace function. The algorithm proceeds with automatic PID designs for the plant.

  • PDF

Human-Livestock Classifier by Using Fuzzy Bayesian Algorithm (퍼지-베이시안을 이용한 인간.가축 분류)

  • Oh, Myung-Jae;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1941-1945
    • /
    • 2011
  • In this paper, we propose a real-time classifier to distinguish humans from livestock by using the spatial integral. The image-difference method and the Expectation Maximization are used to reduce noises in input image. A histogram analysis based on Simulated Annealing and the fuzzy-Bayesian algorithm are used to classify human and livestock. Finally, the experiment results show the validity of the proposed method.

COMPARISON OF METAHEURISTIC ALGORITHMS FOR EXAMINATION TIMETABLING PROBLEM

  • Azimi, Zhara-Naji
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.337-354
    • /
    • 2004
  • SA, TS, GA and ACS are four of the main algorithms for solving challenging problems of intelligent systems. In this paper we consider Examination Timetabling Problem that is a common problem for all universities and institutions of higher education. There are many methods to solve this problem, In this paper we use Simulated Annealing, Tabu Search, Genetic Algorithm and Ant Colony System in their basic frameworks for solving this problem and compare results of them with each other.

Improvement of Tomographic Imaging in Coded Aperture System based on Simulated annealing

  • Noritoshi Kitabatake;Chen, Yen-Wei;Zensyo Nakao
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.425-428
    • /
    • 2000
  • In this paper, we propose a new method based on SA(simulated annealing) with a fast algorithm for 3D image reconstructrion from the coded apereture images. The reconstructed images can be significantly improved by SA and to large computation cost of SA can be significantly reduced by the fast algorithm.

  • PDF

Study on the optimal design for Planetary Gear Train using simulated annealing (시뮬레이티드 어닐링을 이용한 유성치차열의 최적설계에 관한 연구)

  • 최용혁;정태형;이근호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.172-177
    • /
    • 2004
  • A planetary gear trains has characteristics in compactness, power transformation ability and constant meshing. Usability is increased in applications of auto transmission and industrial gearbox. Study on optimum design of planetary gear train has been progressed on minimization of weight, miniaturization of planetary gear train and improvement of high strength. There are demands of study for the planetary gear train required long lift estimation In this wort being considered life, strength, intereference, contact ratio and aspect ratio, the optimum design algorithm is proposed to reduce the volume of planetary gear train with transferring the same amount of power. In the design of algorithm for planetary gear train, the determination of teeth number is separated to achieve simplicity and the simulated annealing method as a global optimal technique is used for optimal design method.

  • PDF