• Title/Summary/Keyword: Simply supported girder bridge

Search Result 60, Processing Time 0.025 seconds

Enhanced damage index method using torsion modes of structures

  • Im, Seok Been;Cloudt, Harding C.;Fogle, Jeffrey A.;Hurlebaus, Stefan
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.427-440
    • /
    • 2013
  • A growing need has developed in the United States to obtain more specific knowledge on the structural integrity of infrastructure due to aging service lives, heavier and more frequent loading conditions, and durability issues. This need has spurred extensive research in the area of structural health monitoring over the past few decades. Several structural health monitoring techniques have been developed that are capable of locating damage in structures using modal strain energy of mode shapes. Typically in the past, bending strain energy has been used in these methods since it is a dominant vibrational mode in many structures and is easily measured. Additionally, there may be cases, such as pipes, shafts, or certain bridges, where structures exhibit significant torsional behavior as well. In this research, torsional strain energy is used to locate damage. The damage index method is used on two numerical models; a cantilevered steel pipe and a simply-supported steel plate girder bridge. Torsion damage indices are compared to bending damage indices to assess their effectiveness at locating damage. The torsion strain energy method is capable of accurately locating damage and providing additional valuable information to both of the structures' behaviors.

Analysis of corrugated steel web beam bridges using spatial grid modelling

  • Xu, Dong;Ni, Yingsheng;Zhao, Yu
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.853-871
    • /
    • 2015
  • Up to now, Japan has more than 200 corrugated steel web composite beam bridges which are under construction and have been constructed, and China has more than 30 corrugated steel web composite beam bridges. The bridge type includes the simply supported beam, continuous beam, continuous rigid frame and cable stayed bridge etc. The section form has developed to the single box and multi-cell box girder from the original single box and single chamber. From the stress performance and cost saving, the span range of 50~150 m is the most competitive. At present, the design mostly adopts the computational analytical method combining the spatial bar system model, plane beam grillage model and solid model. However, the spatial bar system model is short of the refinement analysis on the space effect, such as the shear lag effect, effective distribution width problem, and eccentric load factor problem etc. Due to the similarity of the plane beam grillage method in the equivalence principle, it cannot accurately reflect the shearing stress distribution and local stress of the top and bottom plates of the box type composite beam. The solid model is very difficult to combine with the overall calculation. Moreover, the spatial grid model can achieve the refinement analysis, with the integrity of the analysis and the comprehensiveness of the stress checking calculation, and can make up the deficiency of the analytical method currently. Through the example verification of the solid model and spatial grid model, it can be seen that the calculation results for the stress and the displacement of two models are almost consistent, indicating the applicability and precision of the spatial grid model.

Estimation of Dynamic Displacements of a Bridge using FBG Sensors (FBG센서를 이용한 교량의 동적변위 추정)

  • Shin, Soobong;Yun, Byeong-Goo;Kim, Jae-Cheon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.101-109
    • /
    • 2009
  • An algorithm is proposed for estimating dynamic displacements of a bridge by using FBG sensors and by superposing some measurable low modes. Modal displacements are obtained from the beam theory and the generalized coordinates are deduced from the strains measured by FBG sensors. By considering flexural and torsional modes occurred in bridges only as flexural modes of a simply supported beam by separating a bridge into multiple girders or parts, the proposed algorithm can be applied to various types of bridges. Guidelines are provided theoretically for determining the number of modes and the number of strain gages to be used. The proposed algorithm has been examined through simulation studies on various types of bridges, laboratory experiments on a model bridge, and field tests on a simple span PC Box girder bridge. Through the simulation study, the effects of the error in the vibration modes and measurement noise on estimating the dynamic displacements are analyzed.

The Effects of Braking of Trains and Roughness of Rails on the Dynamic Behaviors of Bridges (열차의 제동 및 궤도의 조도가 교량의 동적 거동에 미치는 영향)

  • Kim, Doo-Kie;Yang, Sin-Chu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.93-101
    • /
    • 2010
  • The effects of braking of trains and roughness of rails on the dynamic behavior of bridges are studied. The train-bridge interaction is considered by solving Lagrange's equation of motions. Newmark's direct integration is used to solve the governing equations. Dynamic train loads acting on piers at each time step are evaluated, and the wheel-rail roughness effect is considered by using the PSD curve of the rail. The model of braking forces in bridge section is based on the change of deceleration mentioned in ASTM(American Society for Testing and Materials) E503-82. Only skidding frictions without considering rolling frictions are modeled, and the friction coefficient of 0.25 is assumed. Parametric studies in a simply supported PC Box girder bridge are carried out to verify the present method and to analyze the effects of train speed, wheel-rail roughness, braking forces on dynamic train loads.

Dynamic Interaction Analysis of Train-bridge Considering Rail-wheel Contact Mechanism (윤축-레일 접촉메카니즘을 고려한 열차-교량 동적상호작용 해석)

  • Min, Dong-Ju;Kwark, Jong-Won;Kim, Moon-Young
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.4
    • /
    • pp.363-373
    • /
    • 2015
  • The purpose of this study is to develop a nonlinear algorithm for the dynamic interaction analysis of KTX trains and bridge girders with consideration of separation and flange contact phenomena between wheel and rail. For this, three interaction models between wheel-rail are implemented and compared through numerical examples. That is, the spring model and the non-jump model are briefly explained, and a nonlinear contact model is then proposed to accurately simulate interaction forces of the train-bridge system. Dynamic interaction analysis of a simply supported girder and trains is performed and the analyzed results are presented and compared for the proposed contact model and the other model types. Particularly, flange contact phenomena in the nonlinear contact model are demonstrated under a specific condition.

Influence of post-pouring joint on long-term performance of steel-concrete composite beam

  • Huang, Dunwen;Wei, Jun;Liu, Xiaochun;Zhang, Shizhuo;Chen, Tao
    • Steel and Composite Structures
    • /
    • v.28 no.1
    • /
    • pp.39-49
    • /
    • 2018
  • The concrete bridge decks are usually precast and in-situ assembled with steel girders with post-pouring joint in the construction practice of super-wide steel-concrete composite beam. But the difference of concrete age between the precast slabs and the post-pouring joint has been not yet considered for the long-term performance analysis of this kind composite beam. A simply supported precast-assembled T-shaped beam was taken as an example to analyze the long-term performance of steel-concrete composite beam with post-pouring joint. Based on the deformation coordination conditions of the old-new concrete deck and steel girder, a theoretical model for the long-term behavior of precast-assembled composite beam is proposed in this paper according to age-adjusted effective modulus method. Then, the feasibility of the proposed model is verified by the available test data from the Gilbert's composite beams. Parametric studies were preformed to evaluate the influences of the cross-sectional area ratio of the post-pouring joint to the whole bridge deck, as well as the difference of concrete age between the precast slabs and the post-pouring joint, on the long-term performance of the composite beam. The results indicate that the traditional method without considering the age difference would seriously underestimate the effect of creep and shrinkage of concrete bridge decks. The concrete age difference between the precast slabs and the post-pouring joint should be demonstrated for the life cycle design and long-term performance analysis of precast-assembled steel-concrete composite beams.

Prediction of the Static Deflection Profiles on Suspension Bridge by Using FBG Strain Sensors (FBG 변형률센서를 이용한 현수교의 정적 처짐형상 추정)

  • Cho, Nam-So;Kim, Nam-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.699-707
    • /
    • 2008
  • For most structural evaluation of bridge integrity, it is very important to measure the geometric profile, which is a major factor representing the global behavior of civil structures, especially bridges. In the past, because of the lack of appropriate methods to measure the deflection profile of bridges on site, the measurement of deflection has been restricted to just a few discrete points along the bridge, and the measuring points have been limited to the locations installed with displacement transducers. Thus, some methods for predicting the static deflection by using fiber optic strain sensors has been applied to simply supported bridges. In this study, a method of estimating the static deflection profile by using strains measured from suspension bridges was proposed. Based on the classical deflection theory of suspension bridges, an equation of deflection profile was derived and applied to obtain the actual deflection profile on Namhae suspension bridge. Field load tests were carried out to measure strains from FBG strain sensors attached inside the stiffening girder of the bridge. The predicted deflection profiles were compared with both precise surveying data and numerical analysis results. Thus, it is found that the equation of predicting the deflection profiles proposed in this study could be applicable to suspension bridges and the FBG strain sensors could be reliable on acquiring the strain data from bridges on site.

Shear stiffness of headed studs on structural behaviors of steel-concrete composite girders

  • He, Jun;Lin, Zhaofei;Liu, Yuqing;Xu, Xiaoqing;Xin, Haohui;Wang, Sihao
    • Steel and Composite Structures
    • /
    • v.36 no.5
    • /
    • pp.553-568
    • /
    • 2020
  • Steel-concrete composite structures have been extensively used in building, bridges, and other civil engineering infrastructure. Shear stud connectors between steel and concrete are essential in composite members to guarantee the effectiveness of their behavior in terms of strength and deformability. This study focuses on investigating the shear stiffness of headed studs embedded in several types of concrete with wide range of compressive strength, and their effects on the elastic behavior of steel-concrete composite girders were evaluated. Firstly, totally 206 monotonic push-out tests from the literature were reviewed to investigate the shear stiffness of headed studs embedded in various types of concrete (NC, HPC, UHPC etc.). Shear stiffness of studs is defined as the secant stiffness of the load-slip curve at 0.5Vu, and a formulation for predicting defined shear stiffness in elastic state was proposed, indicating that the stud diameter and the elastic modulus of steel and concrete are the main factors. And the shear stiffness predicted by the new formula agree well with test results for studs with a diameter ranging from 10 to 30 mm in the concrete with compressive strength ranging from 22.0 to 200.0MPa. Then, the effects of shear stiffness on the elastic behaviors of composite girders with different sizes and under different loading conditions were analyzed, the equations for calculating the stress and deformation of simply supported composite girders considering the influence of connection's shear stiffness were derived under different loading conditions using classical linear partial-interaction theory. As the increasing of shear stiffness, the stress and deflection at the most unfavorable section under partial connected condition tend to be those under full connected condition, but the approaching speed decreases gradually. Finally, the connector's shear stiffness was recommended for fully connection in composite girders with different dimensions under different loading conditions. The findings from present study may provide a reference for the prediction of shear stiffness for headed studs and the elastic design of steel-concrete composite girder.

Effects of Interactions between the Concrete Deck and Steel Girders on the Behavior of Simply Supported Skew Bridges (단순 사교의 거동에 미치는 콘크리트 상판과 주형간의 상호작용 효과)

  • Moon Seong-Kwon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.2 s.72
    • /
    • pp.203-212
    • /
    • 2006
  • Although composite construction has many mechanical advantages over noncomposite construction, the design of noncomposite construction for skew bridges with large skew angels has been often checked because composite construction caused large stresses in the bridge deck. But there is somewhat difficulty to apply noncomposite construction in the field because of the structural problem such as the slip at the interface between the concrete deck and steel girders. In this study, the validity of the application of the composite construction to skew angles with large skew angles is investigated by analyzing effects of two interactions such as composite and noncomposite actions between the concrete deck and steel girders on the behavior of skew bridges. A series of parametric studies for the total 27 simply supported skew bridges was conducted with respect to parameters such as girder spacing, skew angle, and deck aspect ratio. The improvement of the behavior of composite skew bridges was examined by using the concept of the stiffness adjustment of bearings which I suggested in previous research. Results of analyses show that a more desirable behavior of skew bridges can be obtained from composite construction instead of noncomposite construction and the method of the stiffness adjustment of bearings results in a more rational and economical design of composite skew bridges and substructures.

Damage detection in beam-like structures using deflections obtained by modal flexibility matrices

  • Koo, Ki-Young;Lee, Jong-Jae;Yun, Chung-Bang;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.605-628
    • /
    • 2008
  • In bridge structures, damage may induce an additional deflection which may naturally contain essential information about the damage. However, inverse mapping from the damage-induced deflection to the actual damage location and severity is generally complex, particularly for statically indeterminate systems. In this paper, a new load concept, called the positive-bending-inspection-load (PBIL) is proposed to construct a simple inverse mapping from the damage-induced deflection to the actual damage location. A PBIL for an inspection region is defined as a load or a system of loads which guarantees the bending moment to be positive in the inspection region. From the theoretical investigations, it was proven that the damage-induced chord-wise deflection (DI-CD) has the maximum value with the abrupt change in its slope at the damage location under a PBIL. Hence, a novel damage localization method is proposed based on the DI-CD under a PBIL. The procedure may be summarized as: (1) identification of the modal flexibility matrices from acceleration measurements, (2) design for a PBIL for an inspection region of interest in a structure, (3) calculation of the chord-wise deflections for the PBIL using the modal flexibility matrices, and (4) damage localization by finding the location with the maximum DI-CD with the abrupt change in its slope within the inspection region. Procedures from (2)-(4) can be repeated for several inspection regions to cover the whole structure complementarily. Numerical verification studies were carried out on a simply supported beam and a three-span continuous beam model. Experimental verification study was also carried out on a two-span continuous beam structure with a steel box-girder. It was found that the proposed method can identify the damage existence and damage location for small damage cases with narrow cuts at the bottom flange.