• Title/Summary/Keyword: Simply supported girder bridge

Search Result 60, Processing Time 0.024 seconds

Parameters influencing seismic response of horizontally curved, steel, I-girder bridges

  • Linzell, Daniel G.;Nadakuditi, Venkata P.
    • Steel and Composite Structures
    • /
    • v.11 no.1
    • /
    • pp.21-38
    • /
    • 2011
  • This study examines the influence of curved, steel, I-girder bridge configuration on girder end reactions and cross frame member forces during seismic events. Simply-supported bridge finite element models were created and examined under seismic events mimicking what could be experienced in AASHTO Seismic Zone 2. Bridges were analyzed using practical ranges of: radius of curvature; girder and cross frame spacings; and lateral bracing configuration. Results from the study indicated that: (1) radius of curvature had the greatest influence on seismic response; (2) interior (lowest radius) girder reactions were heavily influenced by parameter variations and, in certain instances, uplift at their bearings could be a concern; (3) vertical excitation more heavily influenced bearing and cross frame seismic response; and (4) lateral bracing helped reduce seismic effects but using bracing along the entire span did not provide additional benefit over placing bracing only in bays adjacent to the supports.

Prestressed Concrete Girder Bridges Strengthened by External Post-tensioning Method

  • Kim, Kwang-Soo;Park, Sun-Kyu;Kim, Hyeong-Yeol
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.17-22
    • /
    • 2000
  • This Paper deals with the analysis of both unstrengthened and strengthened prestressed concrete girder bridges. Finite element method is utilized to perform the analysis of superstructures. Based on the grillage method of analysis. emphasis is Placed on the modeling techniques for structures. The conventional grillage method of analysis is modif'=ed so that the interaction between the slab and gilder behaviors can be taken into account in the analysis A Prototype of simply supported prestressed I-type girder bridge is selected for the analysis. The results of numerical analyses are compared with those of load test. The results of analysis indicate that the proposed method of analysis gives more realistic response of bridges than the conventional grillage method.

  • PDF

Vertical seismic response analysis of straight girder bridges considering effects of support structures

  • Wang, Tong;Li, Hongjing;Ge, Yaojun
    • Earthquakes and Structures
    • /
    • v.8 no.6
    • /
    • pp.1481-1497
    • /
    • 2015
  • Vertical earthquake ground motion may magnify vertical dynamic responses of structures, and thus cause serious damage to bridges. As main support structures, piers and bearings play an important role in vertical seismic response analysis of girder bridges. In this study, the pier and bearing are simplified as a vertical series spring system without mass. Then, based on the assumption of small displacement, the equation of motion governing the simply-supported straight girder bridge under vertical ground motion is established including effects of vertical deformation of support structures. Considering boundary conditions, the differential quadrature method (DQM) is applied to discretize the above equation of motion into a MDOF (multi-degree-of-freedom) system. Then seismic responses of this MDOF system are calculated by a step-by-step integration method. Effects of support structures on vertical dynamic responses of girder bridges are studied under different vertical strong earthquake motions. Results indicate that support structures may remarkably increase or decrease vertical seismic responses of girder bridges. So it is of great importance to consider effects of support structures in structural seismic design of girder bridges in near-fault region. Finally, optimization of support structures to resist vertical strong earthquake motions is discussed.

Field distribution factors and dynamic load allowance for simply supported double-tee girder bridges

  • Kidd, Brian;Rimal, Sandip;Seo, Junwon;Tazarv, Mostafa;Wehbe, Nadim
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.69-79
    • /
    • 2022
  • This paper discusses the field testing of two single-span double-tee girder (DTG) bridges in South Dakota to determine live load distribution factors (LLDFs) and the dynamic load allowance (IM). One bridge had seven girders and another had eight girders. The longitudinal girder-to-girder joints of both bridges were deteriorated in a way that water could penetrate and the joint steel members were corroded. A truck traveled across each of the two bridges at five transverse paths. The paths were tested twice with a crawl speed load test and twice with a dynamic load. The LLDFs and IM were determined using strain data measured during the field tests. These results were compared with those determined according to the AASHTO Standard and the AASHTO LRFD specifications. Nearly all the measured LLDFs were below the AASHTO LRFD design LLDFs, with the exception of two instances: 1) An exterior DTG on the seven-girder bridge and 2) An interior DTG on the eight-girder bridge. The LLDFs specified in the AASHTO Standard were conservative compared with the measured LLDFs. It was also found that both AASHTO LRFD and AASHTO Standard specifications were conservative when estimating IM, compared to the field test results for both bridges.

A Study on the Static Analysis of the Cintinuous Curved Box Girder Bridge using Energy Method (에너지법에 의한 연속 곡선박스형교의 정적해석에 관한 연구)

  • Chang, Byung Soon;Seo, Sang Keun;Lee, Dong Jun
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.2
    • /
    • pp.163-176
    • /
    • 2001
  • In this paper, the stress resultants and displacements of simply supported curved girder based on the flexural torsional theory considering torsional warping effects are analyzed. And elastic equations of continuous curved girder are obtained by using energy method. Also, bending moment warping torsional moment diagram, pure torsional moment diagram, shearing force diagram, and deflection diagram of continuos curved girder bridge subjecting to vertical loads and uniform loads are presented.

  • PDF

Destructive Load Testing of Prestrissed Concrete Girder Bridge (PSC 거더교의 파괴실험)

  • Oh, Byung-Hwan;Kim Kwang-Soo;Lew, Young;You, Dong-Woo;Kim, Do-Kyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.470-475
    • /
    • 2000
  • This research covers the resting of precast/prestressed concrete I-Girder bridge. The research was designed to examine processes for improving the condition evaluation and rating of prestressed concrete bridge. To establish procedures that allow for the full utilization of prestressed concrete bridge capacity, a 28-year old sample was loaded to failure in site. The bridge was constructed with 12 spans, and girders of each span were simply supported. At each loading stage, the deflections, reinforcement strains, prestressing wire strains and concrete strains were examined. Failure behavior was analyzed, and failure load was also evaluated. The test results wee compared to the analytical results from the non-linear finite element analysis.

  • PDF

Dynamic Response of Steel Plate Girder Bridges by Numerical Dynamic Analysis (동적해석에 의한 강판형교의 동적응답)

  • Chung, Tae Ju;Shin, Dong-Ku;Park, Young-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.39-49
    • /
    • 2008
  • Dynamic responses of steel plate girder bridges considering road surface roughness of bridge and bridge-vehicle interaction are investigated by numerical analysis. Simply supported steel plate girder bridges with span length of 20 m, 30 m, and 40 m from "The Standardized Design of Highway Bridge Superstructure" published by the Korean Ministry of Construction are used for bridge model and the road surface roughness of bridge decks are generated from power spectral density(PSD) function for different road. Three different vehicles of 2- and 3-axle dump trucks, and 5-axle tractor-trailer(DB-24), are modeled three dimensionally. For the bridge superstructure, beam elements for the main girder, shell elements for concrete deck, and rigid links between main girder and concrete deck are used. Impact factor and DLA of steel plate girder bridges for different spans, type of vehicles and road surface roughnesses are calculated by the proposed numerical analysis model and compared with those specified by several bridge design codes.

An Experimental Study for the Application of Steel Anchorage Zone in Steel-Confined Prestressed Concrete Girder (강재로 구속된 프리스트레스트 콘크리트 합성거더의 강재 정착부 적용을 위한 실험적 고찰)

  • Kim, Jung-Ho;Lee, Sang-Yoon;Hwang, Yoon-Gook;Park, Kyung-Hoon;Oh, Chang-Yeol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.455-458
    • /
    • 2005
  • The Steel-Confined Prestressed Concrete Girder(SCP Girder) has been developed, which maximizes structural advantages of components (concrete, steel plate and tendon) and can be used to construct the middle or long span bridge with low-height girder. And recently, a continuous beam type of SCP Girder has been being developed to decrease size and self weight of girder in comparison with a simply-supported type. In this study, as part of developing the continuous beam type of SCP Girder, a new type of anchorage zone is proposed in order to address tendons effectively and decrease section size of SCP Girder efficiently. And also, the experimental test was carried out using a real scale specimen to examine the behavior of proposed anchorage zone.

  • PDF

Estimation of Dynamic Displacements from Strain Signal using Mode Shapesof Simply Supported Beam (단순보 모드형상을 이용하여 변형률 신호에서 동적변위 응답 추정)

  • Shin, Soo-Bong;Lee, Seon-Ung;Han, Ah-Reum-Sam;Kim, Hyun-Su;Kim, Hee-Dong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.326-331
    • /
    • 2009
  • An algorithm is proposed for computing dynamic displacements of a bridge using FBG sensors. An existing algorithm for estimating dynamic displacements of a simply supported beam through mode superposition is extended and applied to various types of bridges with bending and torsional modes. The proposed algorithm is examined through field tests on a suspension span steel deck plate box girder bridge. Guidelines are provided for determining the number of modes and the number of strain gages to be used.

  • PDF

Investigation of dynamic response of "bridge girder-telpher-load" crane system due to telpher motion

  • Maximov, Jordan T.;Dunchev, Vladimir P.
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.485-507
    • /
    • 2018
  • The moving load causes the occurrence of vibrations in civil engineering structures such as bridges, railway lines, bridge cranes and others. A novel engineering method for separation of the variables in the differential equation of the elastic line of Bernoulli-Euler beam has been developed. The method can be utilized in engineering structures, leading to "a beam under moving load model" with generalized boundary conditions. This method has been implemented for analytical study of the dynamic response of the metal structure of a single girder bridge crane due to the telpher movement along the bridge girder. The modeled system includes: a crane bridge girder; a telpher, moving with a constant horizontal velocity; a load, elastically fixed to the telpher. The forced vibrations with their own frequencies and with a forced frequency, due to the telpher movement, have been analyzed. The loading resulting from the telpher uniform movement along the bridge girder is cyclical, which is a prerequisite for nucleation and propagation of fatigue cracks. The concept of "dynamic coefficient" has been introduced, which is defined as a ratio of the dynamic deflection of the bridge girder due to forced vibrations, to the static one. This ratio has been compared with the known from the literature empirical dynamic coefficient, which is due to the telpher track unevenness. The introduced dynamic coefficient shows larger values and has to be taken into account for engineering calculations of the bridge crane metal structure. In order to verify the degree of approximation, the obtained results have been compared with FEM outcomes. An additional comparison has been made with the exact solution, proposed by Timoshenko, for the case of simply supported beam subjected to a moving force. The comparisons show a good agreement.