• 제목/요약/키워드: Simply Supported Beam

검색결과 453건 처리시간 0.024초

Dynamic analysis and shear connector damage identification of steel-concrete composite beams

  • Hou, Zhongming;Xia, He;Zhang, YanLing
    • Steel and Composite Structures
    • /
    • 제13권4호
    • /
    • pp.327-341
    • /
    • 2012
  • With the advantages of large span, light deadweight and convenient construction, the steel-concrete composite beam (SCCB) has been rapidly developed as a medium span bridge. Compared with common beams, the global stiffness of SCCB is discontinuous and in a staged distribution. In this paper, the analysis model for the simply-supported SCCB is established and the vibration equations are derived. The natural vibration characteristics of a simply-supported SCCB are analyzed, and are compared with the theoretical and experimental results. A curvature mode measurement method is proposed to identify the shear connector damage of SCCB, with the stiffness reduction factor to describe the variation of shear connection stiffness. By analysis on the $1^{st}$ to $3^{rd}$ vertical modes, the distribution of shear connectors between the steel girder and the concrete slab are well identified, and the damage locations and failure degrees are detected. The results show that the curvature modes can be used for identification of the damage location.

Thermal post-buckling analysis of uniform slender functionally graded material beams

  • Anandrao, K. Sanjay;Gupta, R.K.;Ramchandran, P.;Rao, G. Venkateswara
    • Structural Engineering and Mechanics
    • /
    • 제36권5호
    • /
    • pp.545-560
    • /
    • 2010
  • Two or more distinct materials are combined into a single functionally graded material (FGM) where the microstructural composition and properties change gradually. Thermal post-buckling behavior of uniform slender FGM beams is investigated independently using the classical Rayleigh-Ritz (RR) formulation and the versatile Finite Element Analysis (FEA) formulation developed in this paper. The von-Karman strain-displacement relations are used to account for moderately large deflections of FGM beams. Bending-extension coupling arising due to heterogeneity of material through the thickness is included. Simply supported and clamped beams with axially immovable ends are considered in the present study. Post-buckling load versus deflection curves and buckled mode shapes obtained from both the RR and FEA formulations for different volume fraction exponents show an excellent agreement with the available literature results for simply supported ends. Response of the FGM beam with clamped ends is studied for the first time and the results from both the RR and FEA formulations show a very good agreement. Though the response of the FGM beam could have been studied more accurately by FEA formulation alone, the authors aim to apply the RR formulation is to find an approximate closed form post-buckling solutions for the FGM beams. Further, the use of the RR formulation clearly demonstrates the effect of bending-extension coupling on the post-buckling response of the FGM beams.

Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory

  • Bourada, Fouad;Bousahla, Abdelmoumen Anis;Bourada, Mohamed;Azzaz, Abdelghani;Zinata, Amina;Tounsi, Abdelouahed
    • Wind and Structures
    • /
    • 제28권1호
    • /
    • pp.19-30
    • /
    • 2019
  • This article present the free vibration analysis of simply supported perfect and imperfect (porous) FG beams using a high order trigonometric deformation theory. It is assumed that the material properties of the porous beam vary across the thickness. Unlike other theories, the number of unknown is only three. This theory has a parabolic shear deformation distribution across the thickness. So it is useless to use the shear correction factors. The Hamilton's principle will be used herein to determine the equations of motion. Since, the beams are simply supported the Navier's procedure will be retained. To show the precision of this model, several comparisons have been made between the present results and those of existing theories in the literature.

Assessing the effect of temperature-dependent properties on the dynamic behavior of FG porous beams rested on variable elastic foundation

  • Abdeljalil Meksi;Mohamed Sekkal;Rabbab Bachir Bouiadjra;Samir Benyoucef;Abdelouahed Tounsi
    • Structural Engineering and Mechanics
    • /
    • 제85권6호
    • /
    • pp.717-728
    • /
    • 2023
  • The effect of temperature dependent material properties on the free vibration of FG porous beams is investigated in the present paper. A quasi-3D shear deformation solution is used involves only three unknown function. The mechanical properties which are considered to be temperature-dependent as well as the porosity distributions are assumed to gradually change along the thickness direction according to defined law. The beam is supposed to be simply supported and lying on variable elastic foundation. The differential equation system governing the free vibration behavior of porous beams is derived based on the Hamilton principle. Navier's method for simply supported systems is then used to determine and compute the frequencies of FG porous beam. The results of the present formulation are validated by comparing with those available literatures. Finally, the effects of several parameters such as porosity distribution and the parameters of variable elastic foundation on the free vibration behavior of temperature-dependent FG beams are presented and discussed in detail.

다하중 경우를 가지는 단순 지지된 깊은 보의 위상최적화에 대한 경험 (An Experience on the Topology Optimization of Simply Supported Deep Beam Structure with Multi-Load Cases)

  • 이상진;박경임
    • 한국공간구조학회논문집
    • /
    • 제5권3호
    • /
    • pp.83-89
    • /
    • 2005
  • 이 논문은 여러 개의 집중하중을 받는 깊은 보의 최적위상을 조사 분석하고 그 결과를 기술하였다. 본 연구에서는 최소화해야하는 변형에너지를 목적함수로 가정하고 구조물의 초기부피를 제약함수로 사용하였다. 물질내부에 존재하는 구멍의 크기를 조절하기 위하여 최적정기준법을 바탕으로 한 크기조절알고리듬을 도입하였다. 수치해석을 통하여 길은 보의 최적위상과 관련한 위상최적화 파라미터의 민감도를 조사하였고, 필터링과정이 최적위상에 끼치는 영향을 심도 있게 조사하였다. 수치해석결과로부터 깊은 보의 최적위상은 최적화 파라미터와 깊은 연관되어 있고 필터링과정이 최적위상을 찾는데 매우 중요한 역할을 하는 것으로 나타났다.

  • PDF

Geometrically nonlinear analysis of a laminated composite beam

  • Akbas, Seref D.
    • Structural Engineering and Mechanics
    • /
    • 제66권1호
    • /
    • pp.27-36
    • /
    • 2018
  • The objective of this work is to analyze geometrically nonlinear static analysis a simply supported laminated composite beam subjected to a non-follower transversal point load at the midpoint of the beam. In the nonlinear model of the laminated beam, total Lagrangian finite element model of is used in conjunction with the Timoshenko beam theory. The considered non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. There is no restriction on the magnitudes of deflections and rotations in contradistinction to von-Karman strain displacement relations of the beam. In the numerical results, the effects of the fiber orientation angles and the stacking sequence of laminates on the nonlinear deflections and stresses of the composite laminated beam are examined and discussed. Convergence study is performed. Also, the difference between the geometrically linear and nonlinear analysis of laminated beam is investigated in detail.

단순지지 변단면보의 고유진동수 산정 (Natural Frequencies of Simply Supported Tapered Beams)

  • 안성기;김순철;이수곤
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.137-144
    • /
    • 1999
  • The finite element method was adopted to find out the natural frequencies of a sinusoidally tapered beam with simply supported boundary conditions. The parameters considered in the numerical analysis are the taper parameter, $\alpha$ ($\alpha$=0.0, 0.1, ~ , 2.0) and the sectional property parameters, m and n [(m, n):(0, 2), (1, 3), (2, 4)]. It is generally known that the results of the numerical analysis corresponding to each pair of sectional property parameters, (m, n) are represented by second order polynominals of $\alpha$ . The coefficients of a in the polynominals are determined by using the regression technique, which reveals small m in most cases of given sectional property parameters (m, n).

  • PDF

단순지지된 변단면 보의 고유진동수 (Natural Frequencies of Simply Supported Tapered Beams)

  • 김준희;김순철;이수곤
    • 소음진동
    • /
    • 제9권3호
    • /
    • pp.607-612
    • /
    • 1999
  • 일반적으로 보아 고유진동수는 주어진 보의 진동해석 및 동적 안정해석에서 대단히 중요한 역할을 한다. 그러나 보의 단면이 부재축에 따라 연속적으로 변할 때의 고유진동수 산정은 해석적 방법으로는 불가능하거나 대단히 복잡한 것이 보통이기 때문에 수치해석법을 이용하게 된다. 여기서는 유한요소법에 의하여 고유진동수를 산정하였으며 수치해석법의 결과를 일반화하기 위하여 taper ratio를 변수로 하는 회귀식을 제안하였다. 회귀식을 이용한 고유진동수의 추정치는 해석적 방법으로 얻어진 값 또는 수치해석 결과로부터 얻어진 값들과 비교적 잘 일치한다.

  • PDF

크랙을 가진 유체유동 파이프의 안정성에 미치는 부가질량의 영향 (Effects of Attached Mass on Stability of Pipe Conveying Fluid with Crack)

  • 손인수;조정래;윤한익
    • 한국소음진동공학회논문집
    • /
    • 제17권10호
    • /
    • pp.1002-1009
    • /
    • 2007
  • In this paper, the dynamic stability of a cracked simply supported pipe conveying fluid with an attached mass is investigated. Also, the effect of attached mass on the dynamic stability of a simply supported pipe conveying fluid is presented for the different positions and depth of the crack. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by the energy expressions using extended Hamilton's principle. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The crack is assumed to be in the first mode of a fracture and to be always opened during the vibrations. Finally, the critical flow velocities and stability maps of the pipe conveying fluid are obtained by changing the attached mass and crack severity.

크랙과 부가질량들을 가진 유체유동 파이프의 안정성 해석 (Stability Analysis of Pipe Conveying Fluid with Crack and Attached Masses)

  • 손인수;윤한익
    • 한국정밀공학회지
    • /
    • 제25권5호
    • /
    • pp.121-131
    • /
    • 2008
  • In this paper, the dynamic stability of a cracked simply supported pipe conveying fluid with an attached mass is investigated. Also, the effect of attached masses on the dynamic stability of a simply supported pipe conveying fluid is presented for the different positions and depth of the crack. Based on the Euler-Bernoulli beam theory, the equation of motion can be constructed by the energy expressions using extended Hamilton's principle. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The crack is assumed to be in the first mode of a fracture and to be always opened during the vibrations. Finally, the critical flow velocities and stability maps of the pipe conveying fluid are obtained by changing the attached masses and crack severity. As attached masses are increased, the region of re-stabilization of the system is decreased but the region of divergence is increased.