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ABSTRACT

Natural frequencies of non?symmetrically tapered beams with simply supported ends
were determined by solving the frequency equations. In the case of symmetrically tapered
beams, the finite element method was adopted for frequency computation., Computed

frequencies of tapered beams were expressed as functions of taper ratio, @, and sectional
properties, ( m, n).
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frequency of a beam with uniform cross section
1. Introduction : can be determined with ease by an analytical
method without regard to boundary conditions.

The natural frequency of lateral vibration, For this reason many studies have concentrated
especially the fundamental frequency of a beam, on single-span or multi-span beams whose
plays a very important role in the dynamic sectional properties are constant along the beam
analysis of a beam and also in the vibration axis.
analysis of a beam. The fundamental natural However, the determination of the natural

frequency of a tapered beam, that is, when the

* Aty ety wAEA width and/or depth of a beam is a linear

> EAUEy ASFEH function of distance along the beam length, is
*x 23y, Agddigty A& more difficult'’. In this paper, the exact
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fundamental frequencies of simply supported
non-symmetrically tapered beams with variable
taper ratio, a, are determined by solving
frequency equations. Also, for some of the
simply supported symmetrically tapered beams,
finite element method is used to determine the
fundamental frequencies. Finally, frequencies
are expressed by algebraic equations through a
regression technique, which will help structural
engineers to assess dynamic and vibration
analysis results of tapered beams.

2. Non-symmetrically Tapered Beams
with Simple Supports

The natural frequency, w, of a tapered

beam, shown in Fig.1, is governed by(S)

Elojjz(uaf) ((11;2 0

—pA w (1+¢1ff)'l cv=0

where EI, and pA, are the flexural rigidity
and mass per unit length at the origin,
respectively.

In this paper, only 3 cases of ( m, n) pairs,
shown in Eq. 2, will be discussed.

(m,n) : (2,0), (31), (42) (2)

The geometrical meanings of sectional property
parameter, ( m,7n) can be found from some

references. With nondimensional quality X
defined by

— X
X—1+aL .

p—

_ x\"
A,—A,,(l +a¥ )
a = taper ratio (taper parameter)

Fig. 1 Nonsymmetrically tapered beam
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Eq. 1 is transformed into

dXz B X"v=0 (3)

a’XZ)
where B is the nondimensional frequency
defined by Eq. 4

g=tae (LY o (@

a

The general solution of Eq. 3 becomes very
complicated with any pair of ( m, n) given by
Eq. 2. For this reason, only the frequency
equation of a simply supported beam with
sectional properties (m,n) = (2,00 wil be
discussed.

When m=2 and #n =0 are introduced into
Eq. 3, one obtains

d‘;’; (XZ%)—H“0=O (5)

The general solution of this equation is found to
be?

’ _L
Y= leo(ZB ) ( ) (6)
1.
te{28x )+c4K (28x?)

where J, and Y, are Bessel function and
Newman function of order =, respectively and
I, and K, are mnth order modified Bessel

functions of the first and second kind. When the
beam is simply supported at both ends, the
integral constants ¢;, ¢;, ¢3 and ¢4 in Eq. 6

are related to the following boundary conditions.

d*v
X=1(x=0) v=20, =0

aX (7)

d
X=1+a(x=1L) v=20, dX2=0

Now these boundary conditions are introduced
into Eq. 6 to obtain the following frequency

equation.
1 (2B)
-Y,(28
v =0 (8)
L(2B
- K,(28
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In Eq. 8 {2}7 denotes the transpose of {v}
and {v} is given by the following matrix
YyB) —L(B) K, B)
ll ll 12 13
J(B) —IL(B) K,B)
(U}= 12 14 14 15 (9)
J(B) —=Y,(B) KyB)
13 15 15 lﬁ
]2(3) "Yz(B) Iz(B)
where B=28V1+8 and [, b, -, g are
given by the following cylindrical functions.
Y(A) I(A) K(A)
Y (A) I(A) K (A
Y{B) I{B) K.B) —Y/(B) —I(B) —K,(B)
Y(B) —L(B) Ky(B) Y(B) —-I(B) K(B

4 (10,3.)

Yy(B) I(B) KyB) —Yy«(B) —~L(B) —K,(B)

Yy(B) ~L(B) Ky(B) YyB) —~L{(B) Ki(B)

Y(A) I(A) K,(A)

J(A) I A) K,(A)
Y(B) I(B) KJ(B) —J(B) —1(B) ~K\(B)
Yi(B) -I(B) K(B) AI(B) —L(B) K(B)
Y:(B) L(B) KyiB) —J(B) —IL(B) —Ky(B)

il

I (10,b)

Yy(B) —Ii(B) Ki(B) Ji(B) —I(B) Ki(B)

J(A) Y (A) K (A)

Y(A) I£A) K[A)
J{B) Y B) K{B) -Y{B) —IL(B} —K/(B)
I = (10,c)
I(B) Y(B) K(B) Y(B —I(B) K(B)

J(B) YyB) KXB) —Yy(B) —I(B) ~Ky(B)

J(B) Yy«B) KyB) YyiB) —L(B) KB

J(A) Y(A) I(A4)

Y(A) L(A) K[(A)
J{B) YJ{B) I(B) —Y.B) ~1(B) —K.B)
J(B) Y(B) —1(B) Y(B) —-I(B) K(B

L (10,d)

7B YB) IB) ~YyB) —I(B) —KyB)
J(B) Yy(B) —LI(B) YyB) —Ii(B) KyB)

J(A) I(4) KJ(A)
J(4) IA) K[ A)

J{B) I(B) KJB) —](B) —I(B) —K,(B)

[ (10,e)

J(B) —n(B) K(B) Ji(B) —L(B K(B
JAB)  IL(B) EKxB) —JAB) —L(B) —Ky(B

J{A) YA K(A4)

J(A) 14 K[ A
JB) Y{B) KiB) —J(B) —I(B) —K,(B)
J(B) Y(B) K{(B 5h(B) —L(B) K(B

(10.£)

3

JAB) YoB) KiB) —J(B) —L(B) —K)B)

Ji(B) Y«B) KiB) J(B) -I(B) KB

In the above expressions A denotes A = 28.
The fundamental frequency of the simply
supported tapered beam with sectional properties
(m,n) = (20) is determined by finding the
least root satisfying Eq. 6. Some examples of the
calculated frequency are shown in Table 1 in
the column " Cg,". As can be seen in Table 1,

B decreases with increasing taper ratio, a.-
As the procedures to obtain the fundamental
frequency of a tapered beam with other pairs of

Table 1 Frequency of non-symmetrically tapered

beams
El,
w,= C(a
o=C(a) DAL
m=2, n=0 m=3, n=1 m=4 n=2

C fem Cest C{em Cs[ Ciem Csl

0.0 9.8695 | 10.0267 | 9.8695 | 10,0836 | 9.8695 | 10.2365

0.1 10.3556 | 10.4802 | 10.3558 | 10.5188 | 10.3545 | 10.6330

0.2 10.8366 | 10.9311 | 10.8256 | 10.9496 | 10.8074 | 11.0231

0.3 11.3049 { 11,3795 | 11.2846 | 11.3762 | 11.2472 | 11.4067

04 11,7694 | 11.8252 | 11.7310 | 11.7984 | 11.6692 | 11.7838

0.5 12.2322 | 12.2684 | 12.1702 | 12.2163 | 12.0742 | 12,1544

06 12,6823 | 12.7090 | 15.5961 | 12.6300 | 12.4594 | 12.5186

0.7 13,1242 | 13.1470 § 13.0169 | 13.0393 | 12.8413 | 12.8763

0.8 13.5691 | 13.5824 | 13.4362 | 13,4443 | 13.2019 | 13.2275

09 14.0070 { 14.0153 | 13.8374 | 13.8450 | 13.5576 | 13,5723

1.0 14.4402 | 14.4456 | 14.2401 | 14.2413 | 13,9074 | 13.9106

11 14,8722 | 14.8733 | 14,6316 | 14.6334 | 14.2422 | 14.2424

12 15.3000 | 15,2984 | 15.0227 | 15,0212 | 14.5643 | 14.5677

13 15.7194 | 15.7209 | 15.4075 | 15,4046 | 14.8913 | 14.8866

14 16.1418 | 16.1408 | 15,7806 | 15,7838 | 15.1994 | 151990

15 .~ ]16.5596 | 16.5582 | 16.1599 | 16.1586 | 15.5052 | 15.5049

16 16.9732 | 16,9730 | 16,5302 | 16.5292 | 15,8020 { 15.8044

17 17.3825 | 17.3852 | 16.8935 | 16,8954 | 16,1017 | 16.0974

18 17.7959 | 17.7948 | 17.2551 | 17.2573 | 16,3799 | 16.3839

19 18,2005 | 18.2018 | 17.6180 | 17.6149 | 16.6606 | 16.6639

2.0 18.6074 | 18.6063 | 17.9676 | 17.9682 | 16.9410 | 16.9375
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(m,n) of Eq. 2 are very complicated, only the
final results are presented in Table 1.

3. Symmetrically Tapered Beams

The frequency equation for a tapered beam,
shown in Fig. 2, can be derived by repeating a
similar method as that of non-symmetrically
tapered beam.

The procedures to obtain the final frequency
equation, however, become much more
complicated than that of the non-symmetrically
tapered beams discussed before. Thus, a finite
element method is adopted for the determination
of fundamental frequency.

Fig. 3 shows a commonly used beam element

having 2 degrees of freedom at each node.
In this case, the displacement function, o(x)
can be expressed by

v(x)=[N, Ny Ny N1 g; =[NK& QD

0y

where {8} is nodal displacement vector, and the

_ x\" - x\"
A,—A,,(1+2aL) . 1,—1,,(1+2aL)
a = taper ratio (taper parameter)

Fig. 2 Symmetrically tapered beam

b= 1 —
i Bl i
| s 8i(a
- —-————ﬁ:.\
32(02) 34(04) 7

Fig. 3 Beam element
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shape function component, N;, is given by (6)

N2=x(1—%)2 (12)
N=3(5) (%)
N4="—,2(11—1)

The element force vector, {g} and nodal
displacement vector, {&8}, are related by

{g}={[ks]— Wi [mI{3)} (13)

where w, is the natural frequency(ies) of the
beam. And flexural stiffness matrix, [%,]. and
the consistent mass matrix, [m.], of the beam

. 3
segment are given by( )

1= [} [LH] - e [4H s

12 symm.

_ 2
- -Elle b 4l (14)
- P

—-12 6/ 12

—61 2% 61 4P

[mcd= [ INI7+ (pA() - [N] ds

156 symm.
21 42

=24l (15)
54 137 156

—13/ —32 —221 4P

In the derivation of Eq. 14 and 15,
cross-sectional area A(e) and cross-sectional

moment of inertia I(e) of beam segment are
assumed constant. In this paper, they are the
values that are calculated at the middle point of
element length, which coincides well with the
exact values that are obtained by the integrals
with variable I(x) and A(x). '

The assembled beam matrix from the element
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R

where {4} denotes the beam displacement

C

23f =2 neo vector and the right side {0} indicates that Eq.
T 2 | 16 is free vibration problems.
% 21 m=3 n=) The natural frequency of a tapered beam can
e be determined from the following eigenvalue
9 2 me4 a2 L equation.
") det {[K;]—wi[M.1}=0 an
£ 18 a=10 w,=C-y -1k bl Ter e

To obtain the lowest eigenvalue or the

17 ——————T———r——e———>
2 4 6 8 10 12 14 16 18 20 fundamental natural frequency from Eq. 17 by the
segment v computer-aided iteration method, this expression is

transformed into®

Fig. 4 Convergence of fundamental frequency

o det{[K,,]"[Mc]— 12[z]}=o (18)
matrices is to be proceeded in the conventional @o

. (7.8)

manner, which is expressed by in which [I] is the identity matrix.

{[Ks]— W2l MK 4} = {0} (16) As can be seen in Fig. 4, the computed
frequencies converge to certain values when the
Table 2 Frequency of symmetrically tapered beams numbers of the elements are increased. In this
il paper, a symmetrically tapered beam is
@,=C(a) - ijj subdivided into 20 equal elements. Table 2
shows some computed results of the
o m=2. =0 | m=3 n=1 m=4 n=2 fundamental frequency.
Ctem Cest Crem Cest Ctem Cest
00 | 98695 | 10.0536 | 9.8695 |10.2264 | 9.8695 |10.5040 4. Approximate Fundamental Frequency
01 105527 | 10.6972 | 10.5492 | 10.8293 | 10.5421 | 11.0383
0.2 11.2245 | 11,3380 | 11.2093 | 11.4268 | 11.1850 | 11,5637 As one would see in Eq. 8 and Table 1, the
0.3 11.8925 | 11.9759 | 11.8598 } 12,0189} 11,7855 | 12.0800 exact determination of the fundamental
04 12,5543 | 12,6110 | 12.4893 | 12.6056 | 12.3744 | 12,5874 frequency of the lateral vibration of a tapered
05 | 13.2041 | 13.2433 | 13.1003 | 13.1870 | 12.9336 | 13.0857 beam requires a solution of complicated cylindrical
0.6 13.8492 | 13.8727 | 13.7003 | 13.7630 j 13.4656 | 13.5751
07 | 14.4783 | 14.4993 | 14.2895 | 14.3336 | 13.9847 | 14.0556 Table 3 Regression results (range of ¢, 0.0~2.0)
0.8 15.1143 [ 15,1230 | 14.8767 | 14.8988 | 14.4729 | 145270 (m, n
09 | 157433 | 157438 | 154429 | 154587 | 14.9544 | 14.9895 N 4@ @2 3 r

1.0 16.3564 | 16.3619 | 16.0110 } 16.0132 | 15.4286 | 15.4430
1.1 16.9804 | 16.9771 | 16.5620 | 16,5623 | 15.8861 | 15.8875
12 17,5872 | 17.5894 § 17.1031 | 17.1060 | 16.3261 | 16.3230 Fig. 1
13 18.1987 | 18.1989 | 17.6450 | 17.6443 | 16.7476 | 16.7496
14 18.8086 | 18.8055 [ 18.1812 | 18.1773 | 17.1625 | 17.1672
15 19.3955 | 19.4093 | 18.7081 | 18,7049 | 17.5799 | 17.5757
16 20.0130 | 20.0103 | 19.2263 | 19.2271 | 17.9816 | 17.9754
17 20.6122 | 20,6084 | 19.7404 | 19.7439 | 18.3713 | 18.3660
18 21.2126 | 21.2037 | 20.2547 | 20.2554 | 18.7280 | 18.7477 Fig. 2
19 21.7953 | 21,7961 [ 20.7572 } 20.7614 | 19.1277 [ 19.1203
2.0 22.3808 | 22.3857 | 21.2666 | 21.2621 | 19.4856 | 19.4840

10.0266 | 4.5480 | -0.1291 | 0.9959545

1

10.0836 | 4.3731 | -0.2154 | 0.9998060

I

10.2365 | 3.9977 | -0.3236 | 0.9997433

10.0536 | 64505 | -0.1422 | 0.9999806

I

10.2264 | 6.0557 | -0.2689 | 0.9999740

1
N o™ WO NN = W[ N

I

10.5040 | 5.3879 | -0.4489 | 0.9999364

X ¥ S| ¥R |2 RIx B
]

]

g
A
s
tlo
™
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functions and time-consuming calculations.

For the convenience of structural engineers
who are engaged in dynamic analysis or in
vibration problems of tapered beams, the
following expression is proposed :

C(a) = ay+aza+aya’ (19)
The constants a;, e; and a3 in Eq. 19 are

determined by regression technique and the
results are listed in Table 3

In Table 1 and 2, the columns with the name
"Cest” are the frequencies, estimated with Eq.
19 and Table 3. The last column of Table 3
indicates the correlation coefficients given by

z(cfem_ Efem) ° (Cest— _Cest)

= 0 [Z(C/em_ _éfem)Z] ’ [Z(Cat_ _Cat)z] (20)

where Ciem and C.: denotes the mean
values of Cp, and Cu, respectively. It is
observed that the correlation coefficients in
Table 3 are nearly the same in all the cases and
so one can see that the derived regression
equations estimate the frequency data well.

5. Conclusion

The fundamental frequencies of lateral
vibration  of non-symmetrically or symmetrically
tapered beams with simply supported ends can
be determined by an analytical method. The
difficulties
determination were overcome by choosing finite
element method. In the tapered beams, the key

encounfered in the frequency

parameters were taper parameter, a and

612/8=32 287 S3eEx/A 9 B Al 3 T, 19994

sectional property parameter, ( m,x). For easy
hand calculation of natural frequencies, simple
algebraic equations are proposed. The proposed
equation can be easily approached by structural
engineers resulting in less error in actual
application,
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