• Title/Summary/Keyword: Simple Beam

Search Result 1,068, Processing Time 0.028 seconds

Influence of shear deformation of exterior beam-column joints on the quasi-static behavior of RC framed structures

  • Costa, Ricardo J.T.;Gomes, Fernando C.T.;Providencia, Paulo M.M.P.;Dias, Alfredo M.P.G.
    • Computers and Concrete
    • /
    • v.12 no.4
    • /
    • pp.393-411
    • /
    • 2013
  • In the analysis and design of reinforced concrete frames beam-column joints are sometimes assumed as rigid. This simplifying assumption can be unsafe because it is likely to affect the distributions of internal forces and moments, reduce drift and increase the overall load-carrying capacity of the frame. This study is concerned with the relevance of shear deformation of beam-column joints, in particular of exterior ones, on the quasi-static behavior of regular reinforced concrete sway frames. The included parametric studies of a simple sub-frame model reveal that the quasi-static monotonic behavior of unbraced regular reinforced concrete frames is prone to be significantly affected by the deformation of beam-column joints.

Free Vibration Analysis of a Rotating Cantilever Beam Made-up of Functionally Graded Materials (경사기능재료를 사용한 회전하는 외팔보의 진동해석)

  • Lee, Ki Bok;Yoo, Hong Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.742-751
    • /
    • 2013
  • The vibration analysis of a rotating cantilever beam made-up of functionally graded materials is presented based on Timoshenko beam theory. The material properties of the beams are assumed to be varied through the thickness direction following a simple power-law form. The frequency equations, which are coupled through gyroscopic coupling terms, are calculated using hybrid deformation variable modeling along with the Rayleigh-Ritz assumed mode methods. In this study, resulting system of ordinary differential equations shows the effects of power-law exponent, angular speed, length to height ratio and Young's modulus ratio. It is believed that the results will be a reference with which other researchers and commercial FE analysis program, ANSYS can compare their results.

A Study on Vibration Control of a Beam Using Magnetostrictive Actuators (자기변형 구동기를 이용한 보의 진동제어)

  • 임채욱;문석준;정태영;박영진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.433-438
    • /
    • 2003
  • In this paper we explore the effectiveness of a magnetostrictive actuator(MSA) as a structural control device. A series of numerical and experimental tests are carried out with a simple aluminum beam only supported at each end by the actuator. After the equation of motion of the controlled system is obtained by the finite element method, a model reduction is performed to reduce the numbers of degree of freedom. A linear quadratic feedback controller is realized on a real-time digital control system to damp the first four elastic modes of the beam. Through some tests, we confirmed the possibility of this actuator for controlling beam-like structures.

  • PDF

Vibration analysis of FGM beam: Effect of the micromechanical models

  • Hadji, Lazreg
    • Coupled systems mechanics
    • /
    • v.9 no.3
    • /
    • pp.265-280
    • /
    • 2020
  • In this paper, a new refined hyperbolic shear deformation beam theory for the free vibration analysis of functionally graded beam is presented. The theory accounts for hyperbolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the functionally graded beam without using shear correction factors. In addition, the effect of different micromechanical models on the free vibration response of these beams is studied. Various micromechanical models are used to evaluate the mechanical characteristics of the FG beams whose properties vary continuously across the thickness according to a simple power law. Based on the present theory, the equations of motion are derived from the Hamilton's principle. Navier type solution method was used to obtain frequencies, and the numerical results are compared with those available in the literature. A detailed parametric study is presented to show the effect of different micromechanical models on the free vibration response of a simply supported FG beams.

Development of educational software for beam loading analysis using pen-based user interfaces

  • Suh, Yong S.
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.1
    • /
    • pp.67-77
    • /
    • 2014
  • Most engineering software tools use typical menu-based user interfaces, and they may not be suitable for learning tools because the solution processes are hidden and students can only see the results. An educational tool for simple beam analyses is developed using a pen-based user interface with a computer so students can write and sketch by hand. The geometry of beam sections is sketched, and a shape matching technique is used to recognize the sketch. Various beam loads are added by sketching gestures or writing singularity functions. Students sketch the distributions of the loadings by sketching the graphs, and they are automatically checked and the system provides aids in grading the graphs. Students receive interactive graphical feedback for better learning experiences while they are working on solving the problems.

Reduction of the Residual Vibrations of a Flexible Cantilever Beam Subjected to a Transient Translation or Rotation Motion (병진 또는 회전하여 위치 이동하는 유연 외팔보의 잔류진동 저감 방법)

  • Shin, Ki-Hong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.3-10
    • /
    • 2008
  • In this paper, the optimal command input is considered in order to minimize the residual vibrations of a flexible cantilever beam when the beam simply changes its position by translation or rotation. Although a cantilever beam has many modes of vibration, it is shown that the consideration of the first mode is sufficient in this case. Thus, the problem becomes a single-degree-of-freedom system subjected to a ground excitation. Two simple methods are proposed to find the optimal command input based on the shock response spectrum (SRS). The first method is the simplest and can be applied to lightly damped cases, and the second method is applicable to more general problems. The second method gives almost the same results as the input shaping method. However the proposed method gives a easier and clearer control strategy.

Stochastic vibration analysis of functionally graded beams using artificial neural networks

  • Trinh, Minh-Chien;Jun, Hyungmin
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.529-543
    • /
    • 2021
  • Inevitable source-uncertainties in geometry configuration, boundary condition, and material properties may deviate the structural dynamics from its expected responses. This paper aims to examine the influence of these uncertainties on the vibration of functionally graded beams. Finite element procedures are presented for Timoshenko beams and utilized to generate reliable datasets. A prerequisite to the uncertainty quantification of the beam vibration using Monte Carlo simulation is generating large datasets, that require executing the numerical procedure many times leading to high computational cost. Utilizing artificial neural networks to model beam vibration can be a good approach. Initially, the optimal network for each beam configuration can be determined based on numerical performance and probabilistic criteria. Instead of executing thousands of times of the finite element procedure in stochastic analysis, these optimal networks serve as good alternatives to which the convergence of the Monte Carlo simulation, and the sensitivity and probabilistic vibration characteristics of each beam exposed to randomness are investigated. The simple procedure presented here is efficient to quantify the uncertainty of different stochastic behaviors of composite structures.

Linearized instability analysis of frame structures under nonconservative loads: Static and dynamic approach

  • Hajdo, Emina;Mejia-Nava, Rosa Adela;Imamovic, Ismar;Ibrahimbegovic, Adnan
    • Coupled systems mechanics
    • /
    • v.10 no.1
    • /
    • pp.79-102
    • /
    • 2021
  • In this paper we deal with instability problems of structures under nonconservative loading. It is shown that such class of problems should be analyzed in dynamics framework. Next to analytic solutions, provided for several simple problems, we show how to obtain the numerical solutions to more complex problems in efficient manner by using the finite element method. In particular, the numerical solution is obtained by using a modified Euler-Bernoulli beam finite element that includes the von Karman (virtual) strain in order to capture linearized instabilities (or Euler buckling). We next generalize the numerical solution to instability problems that include shear deformation by using the Timoshenko beam finite element. The proposed numerical beam models are validated against the corresponding analytic solutions.

Experimental Study on the Structural Capacity of the U-flanged Truss Hybrid Beam with Hollow Rebars (중공철근으로 보강한 U-플랜지 트러스 복합보의 구조 내력에 관한 실험연구)

  • Lee, Seong Min;Oh, Myoung Ho;Kim, Young Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.3
    • /
    • pp.65-72
    • /
    • 2022
  • A typical low and medium-sized neighborhood living facility in reinforced concrete building secures a high floor and pursues an efficient module plan(long span). Accordingly, research on the development of new hybrid beams that can innovatively reduce labor costs such as on-site installation and assembly while securing strength and rigidity is ongoing. In order to verify the structural performance of the U-flanged truss composite beam with newly developed shape, Experiments with various variables are required. Based on the results, this study is to evaluate the strength of U-flanged truss hybrid beam through the flexural strength of the Korea Design Code and experimental values. It was evaluated that nominal flexural strength was 110% to 135% higher than the experimental value.

The Prevention of the Longitudinal Deformation on the Built­Up Beam by using Induction Heating

  • Park, J.U.;Lee, C.H.;Chang, K.H.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.2
    • /
    • pp.7-14
    • /
    • 2003
  • During the manufacture of a ship, longitudinal deformation is produced by fillet welding on the Built­Up beam used to improve the longitudinal strength of a ship. This deformation needs a correcting process separate from a manufacture process and decreases productivity and quality. This deformation is caused by welding moment, which is the value multiplied the shrinking force due to welding by the distance from the neutral axis on a cross section of Built­Up beam. This deformation can be offset by generating a moment which is the same magnitude with and is located in an opposite direction to the welding moment on web plate by induction heating. Accordingly, this study clarifies the creation mechanism of the longitudinal deformation on Built­Up beam with FEM analysis and presents the preventative method of this deformation by induction heating basing the mechanism and verifies its validity through analysis and experiments. The induction heating used here is performed by deciding its location and quantity with experiments and simple equations and by applying them to a real structure.

  • PDF