• 제목/요약/키워드: Similarity rule

검색결과 119건 처리시간 0.023초

공정계획 전문가시스템의 개발-조선 블럭분할에의 응용

  • 박병태;이재원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 1993년도 춘계학술대회 논문집
    • /
    • pp.370-374
    • /
    • 1993
  • This paper describes a study on the expert system based process planning of the block division process in shipbuilding. The prototype system developed deterines the block division line of the midship of crude-oil tanker. Case-based reasoning (CBR) approach relying on previous similar cases to solve the problem is applied instead of rule-based reasoning (RBR). Similar cases are retrieved from case base according to the similarity metrics between input problem and cases. The retrieved case with the highest priority is then adapted to fit to the input problem buy adaptation rules. The adapted solution is proposed as the division line for the input problem.

Characterization of Korean Clays and Pottery by Neutron Activation Analysis (III). A Classification Rule for Unknown Korean Ancient Potsherds

  • Lee, Chul;Kwun, Oh-Cheun;Jung, Dae-Il;Lee, Ihn-Chong;Kim, Nak-Bae
    • Bulletin of the Korean Chemical Society
    • /
    • 제7권6호
    • /
    • pp.438-442
    • /
    • 1986
  • A number of Korean potsherd samples has been classified by Fisher's discriminant method for the training set of Kyungki, Koryung and Kyungnam groups. The Koryung samples have been further classified for the training set of Koryung A, B and C subgroups. The training sets have been used to define classification of unknown samples and clay samples so as to find out some similarity between clay samples and certain potsherd groups.

Preference Prediction System using Similarity Weight granted Bayesian estimated value and Associative User Clustering (베이지안 추정치가 부여된 유사도 가중치와 연관 사용자 군집을 이용한 선호도 예측 시스템)

  • 정경용;최성용;임기욱;이정현
    • Journal of KIISE:Software and Applications
    • /
    • 제30권3_4호
    • /
    • pp.316-325
    • /
    • 2003
  • A user preference prediction method using an exiting collaborative filtering technique has used the nearest-neighborhood method based on the user preference about items and has sought the user's similarity from the Pearson correlation coefficient. Therefore, it does not reflect any contents about items and also solve the problem of the sparsity. This study suggests the preference prediction system using the similarity weight granted Bayesian estimated value and the associative user clustering to complement problems of an exiting collaborative preference prediction method. This method suggested in this paper groups the user according to the Genre by using Association Rule Hypergraph Partitioning Algorithm and the new user is classified into one of these Genres by Naive Bayes classifier to slove the problem of sparsity in the collaborative filtering system. Besides, for get the similarity between users belonged to the classified genre and new users, this study allows the different estimated value to item which user vote through Naive Bayes learning. If the preference with estimated value is applied to the exiting Pearson correlation coefficient, it is able to promote the precision of the prediction by reducing the error of the prediction because of missing value. To estimate the performance of suggested method, the suggested method is compared with existing collaborative filtering techniques. As a result, the proposed method is efficient for improving the accuracy of prediction through solving problems of existing collaborative filtering techniques.

An Analysis of the Pseudo-analytical Thought and Analytical Thought that Students Do in the Process of Algebra Problem Solving (대수 문장제 해결 과정에서 나타나는 擬似(의사) 분석적 사고와 분석적 사고에 대한 분석 - 중학생 대상의 사례 연구 -)

  • Park, Hyun-Jeong;Lee, Chong-Hee
    • Journal of Educational Research in Mathematics
    • /
    • 제17권1호
    • /
    • pp.67-90
    • /
    • 2007
  • The purpose of this study is to understand students' thinking process in the algebra problem solving, on the base of the works of Vinner(1997a, 1997b). Thus, two middle school students were evaluated in this case study to examine how they think to solve algebra word problems. The following question was considered to analyze the thinking process from the similarity-based perspective by focusing on the process of solving algebra word problems; What is the relationship between similarity and the characteristics of thinking process at the time of successful and unsuccessful problem solving? The following results were obtained by analyzing the success or failure in problem solving based on the characteristics of thinking process and similarity composition. Successful problem solving can be based on pseudo-analytical thought and analytical thought. The former is the rule applied in the process of applying closed formulas that is constructed structural similarity not related with the situations described in the text. The latter means that control and correction occurred in all stages of problem solution. The knowledge needed for solutions was applied with the formulation of open-end formulas that is constructed structural similarity in which memory and modification with the related principles or concepts. In conclusion, the student's perception on the principles involved in a solution is very important in solving algebraic word problems.

  • PDF

Bounds of PIM-based similarity measures with partially marginal proportion (부분적 주변 비율에 의한 확률적 흥미도 측도 기반 유사성 측도의 상한 및 하한의 설정)

  • Park, Hee Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권4호
    • /
    • pp.857-864
    • /
    • 2015
  • By Wikipedia, data mining is the computational process of discovering patterns in huge data sets involving methods at the intersection of association rule, decision tree, clustering, artificial intelligence, machine learning. Clustering or cluster analysis is the task of grouping a set of objects in such a way that objects in the same group are more similar to each other than to those in other groups. The similarity measures being used in the clustering may be classified into various types depending on the characteristics of data. In this paper, we computed bounds for similarity measures based on the probabilistic interestingness measure with partially marginal probability such as Peirce I, Peirce II, Cole I, Cole II, Loevinger, Park I, and Park II measure. We confirmed the absolute value of Loevinger measure wasthe upper limit of the absolute value of any other existing measures. Ordering of other measures is determined by the size of concurrence proportion, non-simultaneous occurrence proportion, and mismatch proportion.

A Study on Adaptive Knowledge Automatic Acquisition Model from Case-Based Reasoning System (사례 기반 추론 시스템에서 적응 지식 자동 획득 모델에 관한 연구)

  • 이상범;김영천;이재훈;이성주
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 한국퍼지및지능시스템학회 2002년도 춘계학술대회 및 임시총회
    • /
    • pp.81-86
    • /
    • 2002
  • In current CBR(Case-Based Reasoning) systems, the case adaptation is usually performed by rule-based method that use rules hand-coded by the system developer. So, CBR system designer faces knowledge acquisition bottleneck similar to those found in traditional expert system design. In this thesis, 1 present a model for learning method of case adaptation knowledge using case base. The feature difference of each pair of cases are noted and become the antecedent part of an adaptation rule, the differences between the solutions in the compared cases become the consequent part of the rule. However, the number of rules that can possibly be discovered using a learning algorithm is enormous. The first method for finding cases to compare uses a syntactic measure of the distance between cases. The threshold fur identification of candidates for comparison is fixed th the maximum number of differences between the target and retrived case from all retrievals. The second method is to use similarity metric since the threshold method may not be an accurate measure. I suggest the elimination method of duplicate rules. In the elimination process, a confidence value is assigned to each rule based on its frequency. The learned adaptation rules is applied in riven target Problem. The basic. process involves search for all rules that handle at least one difference followed by a combination process in which complete solutions are built.

  • PDF

Recommending System of Products on e-shopping malls based on CBR and RBR (사례기반추론과 규칙기반추론을 이용한 e-쇼핑몰의 상품추천 시스템)

  • Lee, Gun-Ho;Lee, Dong-Hun
    • The KIPS Transactions:PartD
    • /
    • 제11D권5호
    • /
    • pp.1189-1196
    • /
    • 2004
  • It is a major concern of e-shopping mall managers to satisfy a variety of customer's desire by recommending a proper product to the perspective purchaser. Customer information like customer's fondness, age, gender, etc. in shopping has not been used effectively for the customers or the suppliers. Conventionally, e-shopping mall managers have recommended specific items of products to their customers without considering thoroughly in a customer point of view. This study introduces the ways of a choosing and recommending of products using case-based reasoning and rule-based reasoning for customer themselves or others. A similarity measure between one member's idiosyncrasy and the other members' is developed based on the rule base and the case base. The case base is improved for the system intelligence by recognizing and learning the changes of customer's desire and shopping trend.

Comparison of confidence measures useful for classification model building (분류 모형 구축에 유용한 신뢰도 측도 간의 비교)

  • Park, Hee Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권2호
    • /
    • pp.365-371
    • /
    • 2014
  • Association rule of the well-studied techniques in data mining is the exploratory data analysis for understanding the relevance among the items in a huge database. This method has been used to find the relationship between each set of items based on the interestingness measures such as support, confidence, lift, similarity measures, etc. By typical association rule technique, we generate association rule that satisfy minimum support and confidence values. Support and confidence are the most frequently used, but they have the drawback that they can not determine the direction of the association because they have always positive values. In this paper, we compared support, basic confidence, and three kinds of confidence measures useful for classification model building to overcome this problem. The result confirmed that the causal confirmed confidence was the best confidence in view of the association mining because it showed more precisely the direction of association.

Accelerating Group Fusion for Ligand-Based Virtual Screening on Multi-core and Many-core Platforms

  • Mohd-Hilmi, Mohd-Norhadri;Al-Laila, Marwah Haitham;Hassain Malim, Nurul Hashimah Ahamed
    • Journal of Information Processing Systems
    • /
    • 제12권4호
    • /
    • pp.724-740
    • /
    • 2016
  • The performance issues of screening large database compounds and multiple query compounds in virtual screening highlight a common concern in Chemoinformatics applications. This study investigates these problems by choosing group fusion as a pilot model and presents efficient parallel solutions in parallel platforms, specifically, the multi-core architecture of CPU and many-core architecture of graphical processing unit (GPU). A study of sequential group fusion and a proposed design of parallel CUDA group fusion are presented in this paper. The design involves solving two important stages of group fusion, namely, similarity search and fusion (MAX rule), while addressing embarrassingly parallel and parallel reduction models. The sequential, optimized sequential and parallel OpenMP of group fusion were implemented and evaluated. The outcome of the analysis from these three different design approaches influenced the design of parallel CUDA version in order to optimize and achieve high computation intensity. The proposed parallel CUDA performed better than sequential and parallel OpenMP in terms of both execution time and speedup. The parallel CUDA was 5-10x faster than sequential and parallel OpenMP as both similarity search and fusion MAX stages had been CUDA-optimized.

Experimental Study on Subjective Evaluation of Car Interior Sound Quality (승용차 내부소음의 음질평가 실험연구)

  • 최병호;아우구스트쉬크
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.177-182
    • /
    • 2003
  • This study is directed toward determining the number and characteristics of psychologically meaningful perceptual dimensions required for assessing the sound Ouaiity with respect to vehicle interior and/or exterior noises. and toward identifying the acoustical or psychoacoustical bases underlying the perception. By nonmetric MDS and clustring analysis of sound quality data sets on our own, of critical importance are two perceptual dimensions for which subjective verdicts can be interpreted as loudness and sharpness. The perceptual dimensions based upon similarity judgments could be accounted for 48% and 24% of the variance. each of which might be a match for the acoustic parameter "A-weighted maximum pressure level"(r= .85) and for the psychoacoustic parameter "sharpness" (r= .65), respectively. On the other hand, the perceptual dimensions based upon preference ratings could explain 66% and 10% of the variance. where the acoustic parameter "A-weighted maximum pressure leve"(r= .92) might be taken to be a best predictor, but sharpness appeared to be less suitable for the description of Preference behavior. Linked to the results, the problems of quantitative modelling of subjective sound quality evaluation and also of implementing corresponding cognitive combination rule for technical and industrial applications, say having "winner-sound qualify" according to preference criteria will be shortly in discussion.

  • PDF