• Title/Summary/Keyword: Similarity method

Search Result 2,752, Processing Time 0.031 seconds

A Method of Service Refinement for Network-Centric Operational Environment

  • Lee, Haejin;Kang, Dongsu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.12
    • /
    • pp.97-105
    • /
    • 2016
  • Network-Centric Operational Environment(NCOE) service becomes critical in today's military environment network because reusability of service and interaction are being increasingly important as well in business process. However, the refinement of service by semantic similarity and functional similarity at the business process was not detailed yet. In order to enhance accuracy of refining of business service, in this study, the authors introduce a method for refining service by semantic similarity and functional similarity in BPMN model. The business process are designed in a BPMN model. In this model, candidated services are refined through binding related activities by the analysis result of semantic similarity based on word-net and functional similarity based on properties specification between activities. Then, the services are identified through refining the candidated service. The proposed method is expected to enhance the service identification with accuracy and modularity. It also can accelerate more standardized service refinement developments by the proposed method.

Improved Collaborative Filtering Using Entropy Weighting

  • Kwon, Hyeong-Joon
    • International Journal of Advanced Culture Technology
    • /
    • v.1 no.2
    • /
    • pp.1-6
    • /
    • 2013
  • In this paper, we evaluate performance of existing similarity measurement metric and propose a novel method using user's preferences information entropy to reduce MAE in memory-based collaborative recommender systems. The proposed method applies a similarity of individual inclination to traditional similarity measurement methods. We experiment on various similarity metrics under different conditions, which include an amount of data and significance weighting from n/10 to n/60, to verify the proposed method. As a result, we confirm the proposed method is robust and efficient from the viewpoint of a sparse data set, applying existing various similarity measurement methods and Significance Weighting.

  • PDF

On the Study of Perfect Coverage for Recommender System

  • Lee, Hee-Choon;Lee, Seok-Jun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.4
    • /
    • pp.1151-1160
    • /
    • 2006
  • The similarity weight, the pearson's correlation coefficient, which is used in the recommender system has a weak point that it cannot predict all of the prediction value. The similarity weight, the vector similarity, has a weak point of the high MAE although the prediction coverage using the vector similarity is higher than that using the pearson's correlation coefficient. The purpose of this study is to suggest how to raise the prediction coverage. Also, the MAE using the suggested method in this study was compared both with the MAE using the pearson's correlation coefficient and with the MAE using the vector similarity, so was the prediction coverage. As a result, it was found that the low of the MAE in the case of using the suggested method was higher than that using the pearson's correlation coefficient. However, it was also shown that it was lower than that using the vector similarity. In terms of the prediction coverage, when the suggested method was compared with two similarity weights as I mentioned above, it was found that its prediction coverage was higher than that pearson's correlation coefficient as well as vector similarity.

  • PDF

Dynamic gesture recognition using a model-based temporal self-similarity and its application to taebo gesture recognition

  • Lee, Kyoung-Mi;Won, Hey-Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2824-2838
    • /
    • 2013
  • There has been a lot of attention paid recently to analyze dynamic human gestures that vary over time. Most attention to dynamic gestures concerns with spatio-temporal features, as compared to analyzing each frame of gestures separately. For accurate dynamic gesture recognition, motion feature extraction algorithms need to find representative features that uniquely identify time-varying gestures. This paper proposes a new feature-extraction algorithm using temporal self-similarity based on a hierarchical human model. Because a conventional temporal self-similarity method computes a whole movement among the continuous frames, the conventional temporal self-similarity method cannot recognize different gestures with the same amount of movement. The proposed model-based temporal self-similarity method groups body parts of a hierarchical model into several sets and calculates movements for each set. While recognition results can depend on how the sets are made, the best way to find optimal sets is to separate frequently used body parts from less-used body parts. Then, we apply a multiclass support vector machine whose optimization algorithm is based on structural support vector machines. In this paper, the effectiveness of the proposed feature extraction algorithm is demonstrated in an application for taebo gesture recognition. We show that the model-based temporal self-similarity method can overcome the shortcomings of the conventional temporal self-similarity method and the recognition results of the model-based method are superior to that of the conventional method.

Comparative Study on the Measures of Similarity for the Location Template Matching(LTM) Method (Location Template Matching(LTM) 방법에 사용되는 유사성 척도들의 비교 연구)

  • Shin, Kihong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.4
    • /
    • pp.310-316
    • /
    • 2014
  • The location template matching(LTM) method is a technique of identifying an impact location on a structure, and requires a certain measure of similarity between two time signals. In general, the correlation coefficient is widely used as the measure of similarity, while the group delay based method is recently proposed to improve the accuracy of the impact localization. Another possible measure is the frequency response assurance criterion(FRAC), though this has not been applied yet. In this paper, these three different measures of similarity are examined comparatively by using experimental data in order to understand the properties of these measures of similarity. The comparative study shows that the correlation coefficient and the FRAC give almost the same information while the group delay based method gives the shape oriented information that is best suitable for the location template matching method.

Comparative Study on the Measures of Similarity for the Location Template Matching (LTM) Method (Location Template Matching(LTM) 방법에 사용되는 유사성 척도들의 비교 연구)

  • Shin, Kihong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.506-511
    • /
    • 2014
  • The location template matching (LTM) method is a technique of identifying an impact location on a structure, and requires a certain measure of similarity between two time signals. In general, the correlation coefficient is widely used as the measure of similarity, while the group delay based method is recently proposed to improve the accuracy of the impact localization. Another possible measure is the frequency response assurance criterion (FRAC), though this has not been applied yet. In this paper, these three different measures of similarity are examined comparatively by using experimental data in order to understand the properties of these measures of similarity. The comparative study shows that the correlation coefficient and the FRAC give almost the same information while the group delay based method gives the shape oriented information that is best suitable for the location template matching method.

  • PDF

Clustering method for similar user with Miexed Data in SNS

  • Song, Hyoung-Min;Lee, Sang-Joon;Kwak, Ho-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.11
    • /
    • pp.25-30
    • /
    • 2015
  • The enormous increase of data with the development of the information technology make internet users to be hard to find suitable information tailored to their needs. In the face of changing environment, the information filtering method, which provide sorted-out information to users, is becoming important. The data on the internet exists as various type. However, similarity calculation algorithm frequently used in existing collaborative filtering method is tend to be suitable to the numeric data. In addition, in the case of the categorical data, it shows the extreme similarity like Boolean Algebra. In this paper, We get the similarity in SNS user's information which consist of the mixed data using the Gower's similarity coefficient. And we suggest a method that is softer than radical expression such as 0 or 1 in categorical data. The clustering method using this algorithm can be utilized in SNS or various recommendation system.

Measurement of Document Similarity using Word and Word-Pair Frequencies (단어 및 단어쌍 별 빈도수를 이용한 문서간 유사도 측정)

  • 김혜숙;박상철;김수형
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1311-1314
    • /
    • 2003
  • In this paper, we propose a method to measure document similarity. First, we have exploited single-term method that extracts nouns by using a lexical analyzer as a preprocessing step to match one index to one noun. In spite of irrelevance between documents, possibility of increasing document similarity is high with this method. For this reason, a term-phrase method has been reported. This method constructs co-occurrence between two words as an index to measure document similarity. In this paper, we tried another method that combine these two methods to compensate the problems in these two methods. Six types of features are extracted from two input documents, and they are fed into a neural network to calculate the final value of document similarity. Reliability of our method has been proved by an experiment of document retrieval.

  • PDF

A weighted similarity coefficient method for manufacturing cell formation (제조셀 형성을 위한 가중치 유사성계수 방법)

  • 오수철;조규갑
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.04a
    • /
    • pp.122-129
    • /
    • 1995
  • This paper presents a similarity coefficient based approach to the problem of machine-part grouping for cellular manufacturing. The method uses relevant production data such as part type, production volume, routing sequence to make machine cells and part families for cell formation. A new similarity coefficient using weighted factors is introduced and an algorithm for formation of machine cells and part families is developed. A comparative study of two similarity coefficients - Gupta and seifoddini's method and proposed method - is conducted. A software program using TURBO C has been developed to verify the implementation.

  • PDF

A weighted similarity coefficient method for manufacturing cell formation (제조셀 형성을 위한 가중치 유사성계수 방법)

  • Oh, Soo-Cheol;Cho, Kyu-Kab
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.22 no.1
    • /
    • pp.141-154
    • /
    • 1996
  • This paper presents a similarity coefficient based approach to the problem of machine-part grouping for cellular manufacturing. The method uses relevant production data such as part type, production volume, routing sequence to make machine cells and part families for cell formation. A new similarity coefficient using weighted factors is introduced and an algorithm for formation of machine cells and part families is developed. A comparative study of two similarity coefficient methods, Gupta and Seifoddini's method and the proposed method, is conducted.

  • PDF