• Title/Summary/Keyword: Similarity measure

Search Result 765, Processing Time 0.032 seconds

The transmission Network clustering using a fuzzy entropy function (퍼지 엔트로피 함수를 이용한 송전 네트워크 클러스터링)

  • Jang, Se-Hwan;Kim, Jin-Ho;Lee, Sang-Hyuk;Park, Jun-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.225-227
    • /
    • 2006
  • The transmission network clustering using a fuzzy entropy function are proposed in this paper. We can define a similarity measure through a fuzzy entropy. All node in the transmission network system has its own values indicating the physical characteristics of that system and the similarity measure in this paper is defined through the system-wide characteristic values at each node. However, to tackle the geometric mis-clustering problem, that is, to avoid the clustering of geometrically distant locations with similar measures, the locational informations are properly considered and incorporated in the proposed similarity measure. In this paper, a new regional clustering measure for the transmission network system is proposed and proved. The proposed measure is verified through IEEE 39 bus system.

  • PDF

Exploration of PIM based similarity measures as association rule thresholds (확률적 흥미도를 이용한 유사성 측도의 연관성 평가 기준)

  • Park, Hee Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.6
    • /
    • pp.1127-1135
    • /
    • 2012
  • Association rule mining is the method to quantify the relationship between each set of items in a large database. One of the well-studied problems in data mining is exploration for association rules. There are three primary quality measures for association rule, support and confidence and lift. We generate some association rules using confidence. Confidence is the most important measure of these measures, but it is an asymmetric measure and has only positive value. Thus we can face with difficult problems in generation of association rules. In this paper we apply the similarity measures by probabilistic interestingness measure to find a solution to this problem. The comparative studies with support, two confidences, lift, and some similarity measures by probabilistic interestingness measure are shown by numerical example. As the result, we knew that the similarity measures by probabilistic interestingness measure could be seen the degree of association same as confidence. And we could confirm the direction of association because they had the sign of their values.

An Efficient Image Matching Scheme Based on Min-Max Similarity for Distorted Images (왜곡 영상을 위한 효과적인 최소-최대 유사도(Min-Max Similarity) 기반의 영상 정합 알고리즘)

  • Heo, Young-Jin;Jeong, Da-Mi;Kim, Byung-Gyu
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.12
    • /
    • pp.1404-1414
    • /
    • 2019
  • Educational books commonly use some copyrighted images with various kinds of deformation for helping students understanding. When using several copyrighted images made by merging or editing distortion in legal, we need to pay a charge to original copyright holders for each image. In this paper, we propose an efficient matching algorithm by separating each copyrighted image with the merged and edited type including rotation, illumination change, and change of size. We use the Oriented FAST and Rotated BRIEF (ORB) method as a basic feature matching scheme. To improve the matching accuracy, we design a new MIN-MAX similarity in matching stage. With the distorted dataset, the proposed method shows up-to 97% of precision in experiments. Also, we demonstrate that the proposed similarity measure also outperforms compared to other measure which is commonly used.

Similarity Assessment for Geometric Query on Mechanical Parts (기계부품의 형상검색은 위한 유사성 평가방법)

  • 김철영;김영호;강석호
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.2
    • /
    • pp.103-112
    • /
    • 2000
  • CAD databases are the core element to the management of product information. A key to the successful use of the databases is a rational method of query to and retrieval from the databases. Although it is parts geometry that users eager to retrieve from the CAD databases, no system yet supports geometry-based query. This paper aims at developing a new method of assessing geometric similarity which can serve as the basis of geometric query for CAD database. The proposed method uses ASVP (Alternating Sums of Volumes with Partitioning) decomposition that is a volumetric representation of a part obtained from its boundary representation. A measure of geometric similarity between two solid models is defined on their ASVP tree representations. The measure can take into account overall shapes of parte, shapes of features and their locations. Several properties that a similarity measure needs to satisfy are discussed. The geometric query developed in this paper can be used in a wide range of applications using CAD databases, which include similarity-based design retrieval, variant process planning, and components selection from part library. An experiment has been carried out to demonstrate the effectiveness of the method, and the results are presented.

  • PDF

A New Similarity Measure for Categorical Attribute-Based Clustering (범주형 속성 기반 군집화를 위한 새로운 유사 측도)

  • Kim, Min;Jeon, Joo-Hyuk;Woo, Kyung-Gu;Kim, Myoung-Ho
    • Journal of KIISE:Databases
    • /
    • v.37 no.2
    • /
    • pp.71-81
    • /
    • 2010
  • The problem of finding clusters is widely used in numerous applications, such as pattern recognition, image analysis, market analysis. The important factors that decide cluster quality are the similarity measure and the number of attributes. Similarity measures should be defined with respect to the data types. Existing similarity measures are well applicable to numerical attribute values. However, those measures do not work well when the data is described by categorical attributes, that is, when no inherent similarity measure between values. In high dimensional spaces, conventional clustering algorithms tend to break down because of sparsity of data points. To overcome this difficulty, a subspace clustering approach has been proposed. It is based on the observation that different clusters may exist in different subspaces. In this paper, we propose a new similarity measure for clustering of high dimensional categorical data. The measure is defined based on the fact that a good clustering is one where each cluster should have certain information that can distinguish it with other clusters. We also try to capture on the attribute dependencies. This study is meaningful because there has been no method to use both of them. Experimental results on real datasets show clusters obtained by our proposed similarity measure are good enough with respect to clustering accuracy.

A bidirectional fuzy inference network for interval valued decision making systems (구간 결정값을 갖는 의사결정시스템의 양방향 퍼지 추론망)

  • 전명근
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.10
    • /
    • pp.98-105
    • /
    • 1997
  • In this work, we proesent a bidirectional approximate reasoning method and fuzzy inference network for interval valued decision making systems. For this, we propose a new type of similarity measure between two fuzzy vectors based on the Ordered Weighted Averaging (OWA) operator. Since the proposed similarity measure has a structure to give the extreme values by choosing a suitable weighting vector of the OWA operator, it can render an interval valued similarity value. From this property, we derive a bidirectional approximate reasoning method based on the similarity measure and show its fuzzy inference network implementation for the decision making systems requiring the interval valued decisions.

  • PDF

A Hierarchical Clustering Algorithm Using Extended Sequence Element-based Similarity Measure (확장된 시퀀스 요소 기반의 유사도를 이용한 계층적 클러스터링 알고리즘)

  • Oh, Seung-Joon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.5 s.43
    • /
    • pp.321-327
    • /
    • 2006
  • Recently there has been enormous growth in the amount of commercial and scientific data. Such datasets consist of sequence data that have an inherent sequential nature. However, only a few of the existing clustering algorithms consider sequentiality. This study presents a similarity measure and a method for clustering such sequence datasets. Especially, we present an extended concept of the measure of similarity, which considers various conditions. Using a splice dataset, we show that the quality of clusters generated by our proposed clustering algorithm is better than that of clusters produced by traditional clustering algorithms.

  • PDF

Acceleration sensor, and embedded system using location-aware

  • He, Wei;Nayel, Mohamed
    • Journal of Convergence Society for SMB
    • /
    • v.3 no.1
    • /
    • pp.23-30
    • /
    • 2013
  • In this paper, fuzzy entropy and similarity measure to measure the uncertainty and similarity of data as real value were introduced. Design of fuzzy entropy and similarity measure were illustrated and proved. Obtained measures were applied to the calculating process and discussed. Extension of data quantification results such as decision making and fuzzy game theory were also discussed.

  • PDF

Study of the New Distance for Image Retrieval (새로운 이미지 거리를 통한 이미지 검색 방안 연구)

  • Lee, Sung Im;Lim, Jo Han;Cho, Young Min
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.4
    • /
    • pp.382-387
    • /
    • 2014
  • Image retrieval is a procedure to find images based on the resemblance between query image and all images. In retrieving images, the crucial step that arises is how to define the similarity between images. In this paper, we propose a new similarity measure which is based on distribution of color. We apply the new measure to retrieving two different types of images, wallpaper images and the logo of automobiles, and compare its performance to other existing similarity measures.

Using User Rating Patterns for Selecting Neighbors in Collaborative Filtering

  • Lee, Soojung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.9
    • /
    • pp.77-82
    • /
    • 2019
  • Collaborative filtering is a popular technique for recommender systems and used in many practical commercial systems. Its basic principle is select similar neighbors of a current user and from their past preference information on items the system makes recommendations for the current user. One of the major problems inherent in this type of system is data sparsity of ratings. This is mainly caused from the underlying similarity measures which produce neighbors based on the ratings records. This paper handles this problem and suggests a new similarity measure. The proposed method takes users rating patterns into account for computing similarity, without just relying on the commonly rated items as in previous measures. Performance experiments of various existing measures are conducted and their performance is compared in terms of major performance metrics. As a result, the proposed measure reveals better or comparable achievements in all the metrics considered.