도시의 POI는 사용자들에게 어떤 중요성을 가지고 있는 특별한 장소이다. 예를 들어 식당, 박물관, 호텔, 극장 그리고 랜드마크 등이다. 이들은 그 역할 때문에 우리의 사회 경제적 생활 속에서 온라인 지도나 소셜 네트워크 등의 위치기반 어플리케이션에서 많은 관심을 받고 있다. 하지만, 지리적 위치 등의 POI에 대한 기본 정보는 웹을 통해서 쉽게 얻을 수 있는 반면, 와이파이 가능 여부, 신용카드 가능 여부, 야외 좌석 여부, 놀이방 운영 여부, 개점 시간, 다른 사용자들의 평가 및 평점 등의 세부 정보를 얻기 위해서는 또 다른 노력이 필요하다. 이러한 문제를 해결하기 위해서는 LBSNS 데이터와 POI 위치의 동일 여부를 판단하여 연결해주는 작업이 필요하다. 이 논문은 LBSNS의 누적되어 있는 방대한 정보로부터 POI의 정보를 더욱 풍부하게 만들기 위한 방법으로 LBSNS 데이터와 POI의 위치 오차해결 방법을 제안하여 두 데이터 집합의 융합 정보를 생성하고자 한다. 본 연구의 POI와 LBSNS의 정보 융합 방법을 통하여 개별 POI 정보의 한계성을 극복하고, 사용자들이 필요로 하는 부가 정보를 제공할 수 있는 가능성을 발견하였다. 이를 통해 POI에 대한 풍부하고 빠른 정보 수집이 가능할 것으로 판단된다.
Background: Ginsenosides are not only the principal bioactive components but also the important indexes to the quality assessment of Panax ginseng Meyer. Their contents in cultivated ginseng vary with the growth environment and age. The present study aimed at evaluating the significant difference between 36 cultivated ginseng of different cultivation areas and ages based on the simultaneously determined contents of 14 ginsenosides. Methods: A high-performance liquid chromatography (HPLC) coupled with triple quadrupole mass spectrometer (MS) method was developed and used in the multiple reaction-monitoring (MRM) mode (HPLC-MRM/MS) for the quantitative analysis of ginsenosides. Multivariate statistical analysis, such as principal component analysis and partial least squares-discriminant analysis, was applied to discriminate ginseng samples of various cultivation areas and ages and to discover the differentially accumulated ginsenoside markers. Results: The developed HPLC-MRM/MS method was validated to be precise, accurate, stable, sensitive, and repeatable for the simultaneous determination of 14 ginsenosides. It was found that the 3- and 5-yr-old ginseng samples were differentiated distinctly by all means of multivariate statistical analysis, whereas the 4-yr-old samples exhibited similarity to either 3- or 5-yr-old samples in the contents of ginsenosides. Among the 14 detected ginsenosides, Rg1, Rb1, Rb2, Rc, 20(S)-Rf, 20(S)-Rh1, and Rb3 were identified as potential markers for the differentiation of cultivation ages. In addition, the 5-yr-old samples were able to be classified in cultivation area based on the contents of ginsenosides, whereas the 3- and 4-yr-old samples showed little differences in cultivation area. Conclusion: This study demonstrated that the HPLC-MRM/MS method combined with multivariate statistical analysis provides deep insight into the accumulation characteristics of ginsenosides and could be used to differentiate ginseng that are cultivated in different areas and ages.
The objective of this study was mainly to evaluate the water resources potential of Lake Tana Basin (LTB) by using Soil and Water Assessment Tool (SWAT). From SWAT simulation of LTB, about 5236 km2 area of LTB is gauged watershed and the remaining 9878 km2 area is ungauged watershed. For calibration of model parameters, four gauged stations were considered namely: Gilgel Abay, Gummera, Rib, and Megech. The SWAT-CUP built-in techniques, particle swarm optimization (PSO) and generalized likelihood uncertainty estimation (GLUE) method was used for calibration of model parameters and PSO method were selected for the study based on its performance results in four gauging stations. However the level of sensitivity of flow parameters differ from catchment to catchment, the curve number (CN2) has been found the most sensitive parameters in all gauged catchments. To facilitate the transfer of data from gauged catchments to ungauged catchments, clustering of hydrologic response units (HRUs) were done based on physical similarity measured between gauged and ungauged catchment attributes. From SWAT land use/ soil use/slope reclassification of LTB, a total of 142 HRUs were identified and these HRUs are clustered in to 39 similar hydrologic groups. In order to transfer the optimized model parameters from gauged to ungauged catchments based on these clustered hydrologic groups, this study evaluates three parameter transfer schemes: parameters transfer based on homogeneous regions (PT-I), parameter transfer based on global averaging (PT-II), and parameter transfer by considering Gilgel Abay catchment as a representative catchment (PT-III) since its model performance values are better than the other three gauged catchments. The performance of these parameter transfer approach was evaluated based on values of Nash-Sutcliffe efficiency (NSE) and coefficient of determination (R2). The computed NSE values was found to be 0.71, 0.58, and 0.31 for PT-I, PT-II and PT-III respectively and the computed R2 values was found to be 0.93, 0.82, and 0.95 for PT-I, PT-II, and PT-III respectively. Based on the performance evaluation criteria, PT-I were selected for modelling ungauged catchments by transferring optimized model parameters from gauged catchment. From the model result, yearly average stream flow for all homogeneous regions was found 29.54 m3/s, 112.92 m3/s, and 130.10 m3/s for time period (1989 - 2005) for region-I, region-II, and region-III respectively.
동영상 공유 플랫폼의 발전으로 인해 동영상 업로드 분량이 폭발적으로 증가하고 있다. 그러한 동영상에는 다양한 형태의 음악이 포함되는 경우가 많으며, 그중에는 커버곡이 포함된다. 음악의 저작권을 보호하기 위해서는 커버곡의 원곡을 찾아내는 알고리즘이 필요하지만, 커버곡은 원곡의 조성, 속도와 전체적인 구성이 변형된 것이기 때문에 커버곡의 원곡을 찾기는 쉽지 않다. 이와 같이 변형된 커버곡으로부터 원곡을 검색하는 효율적인 알고리즘은 현재까지 알려진 바가 없다. 이에 본 연구에서는 멜로디 라인의 변곡점들을 활용한 커버곡의 원곡 검색 알고리즘을 제안한다. 변곡점은 멜로디 시퀀스에서 특징적인 변화 지점을 나타낸다. 제안하는 알고리즘은 원곡의 대표 구절에 대한 변곡점 시퀀스를 사용하여 원곡과 커버곡을 비교한다. 원곡의 대표 구절의 특징을 사용하기 때문에 커버곡이 전체적인 곡의 구성을 변형하여 만들어진 곡이라고 해도, 알고리즘의 검색 성능이 우수하다. 또한, 제안한 알고리즘은 변곡점 시퀀스의 특징만을 저장하고 사용하므로 메모리 사용량이 매우 적다. 알고리즘의 효율성은 성능평가를 통해 검증하였다.
네트워크 및 컴퓨터의 발전에 따라 악성코드 역시 폭발적인 증가 추이를 보이고 있으며, 새로운 악성코드의 출현과 더불어 기존의 악성코드를 이용한 변종 역시 큰 몫을 차지하고 있다. 특히 실행압축 기술과 코드 난독화를 이용한 변종들은 제작이 쉬울 뿐만 아니라, 자신의 시그너쳐 혹은 구문적 특징을 변조할 수 있어, 악성코드 제작자들이 널리 사용하는 기술이다. 이러한 변종 및 신종 악성코드를 빠르게 탐지하기 위해, 본 연구에서는 행위 그래프 분석을 통한 악성코드 모듈별 유사도 분석 기법을 제안한다. 우리는 우선 악성코드들에서 일반적으로 사용하는 2,400개 이상의 API 들을 분석하여 총 128개의 행위로 추상화 하였다. 또한 동적 분석을 통해 악성코드들의 API 호출 순서를 추상화된 그래프로 변환하고 부분 그래프들을 추출하여, 악성코드가 가진 모든 행위 부분 집합을 정리하였다. 마지막으로, 이렇게 추출된 부분 집합들 간의 비교 분석을 통하여 해당 악성코드들이 얼마나 유사한지를 분석하였다. 실험에서는 변종 을 포함한 실제 악성코드 273개를 이용하였으며, 총 10,100개의 분석결과를 추출하였다. 실험결과로부터 행위 그래프를 이용하여 변종 악성코드가 모두 탐지 가능함을 보였으며, 서로 다른 악성코드들 간에 공유되는 행위 모델 역시 분석할 수 있었다.
딥러닝 분야 중 생성과 관련된 연구는 주로 GAN 이후에 많은 알고리즘이 있는데 생성이라는 측면에서 볼 때 미술과는 다른 점이 있다. 공학적 측면에서의 생성이 주로 정량적 지표나 정답과 오답의 유무를 판단하는 것이라면 미술적 측면에서의 생성이란 다양한 관점에서 정답과 오답을 교차검증하고 의심하여 세상과 인간의 삶을 해석하는 생성을 만들어낸다. 본 논문은 딥러닝의 비디오 생성능력을 콜라주적 관점에서 해석하고 미술작가가 만든 결과물과 비교하였다. 실험의 특징은 콜라주 기법으로 만든 창작자의 결과물을 GAN이 얼마만큼 재현하는지와 창작적인 부분과의 차이점을 비교분석하는 것이고, GAN의 재현력에 대한 성능 평가항목을 만들어 그 만족도를 조사하였다. 창작자의 스테이트먼트와 표현목적을 얼마나 재현했는지에 관한 실험을 위해서는 스테이트먼트 키워드에 해당하는 딥러닝 알고리즘을 찾아 그 유사성을 비교하였으며, 실험결과 GAN은 콜라주 기법을 표현하기에는 기대에 많이 못 미쳤다. 그럼에도 불구하고 이미지 연상에서는 인간의 능력보다 높은 만족도를 보여주었는데 이것은 GAN의 추상화 생성 측면에서 인간과 비견할만한 능력을 보일 수 있다는 긍정적인 발견이라고 하겠다.
본 논문에서는 코딩 학습 중 학습자의 인지 부하 감소를 목적으로 자연어 처리 모델을 이용하여 전이학습 및 미세조정을 통해 블록 프로그래밍 환경에서 이미 이루어진 학습자의 블록을 학습하여 학습자에게 다음 단계에서 선택 가능한 블록을 생성하고 추천해 주는 머신러닝 기반 블록 코드 생성 및 추천 모델을 개발하였다. 모델 개발을 위해 훈련용 데이터셋은 블록 프로그래밍 언어인 '엔트리' 사이트의 인기 프로젝트 50개의 블록 코드를 전처리하여 제작하였으며, 훈련 데이터셋과 검증 데이터셋 및 테스트 데이터셋으로 나누어 LSTM, Seq2Seq, GPT-2 모델을 기반으로 블록 코드를 생성하는 모델을 개발하였다. 개발된 모델의 성능 평가 결과, GPT-2가 LSTM과 Seq2Seq 모델보다 문장의 유사도를 측정하는 BLEU와 ROUGE 지표에서 더 높은 성능을 보였다. GPT-2 모델을 통해 실제 생성된 데이터를 확인한 결과 블록의 개수가 1개 또는 17개인 경우를 제외하면 BLEU와 ROUGE 점수에서 비교적 유사한 성능을 내는 것을 알 수 있었다.
본 논문에서는 딥러닝 기법의 하나인 Mask R-CNN과 랜덤포레스트 분류기를 이용해 당뇨병성 망막병증의 병리학적인 특징을 검출하고 분석하여 자동 진단하는 시스템을 연구하였다. 당뇨병성 망막병증은 특수장비로 촬영한 안저영상을 통해 진단할 수 있는데 밝기, 색조 및 명암은 장치에 따라 다를 수 있으며 안과 전문의의 의료적 판단을 도울 인공지능을 이용한 자동진단 시스템 연구와 개발이 가능하다. 이 시스템은 미세혈관류와 망막출혈을 Mask R-CNN 기법으로 검출하고, 후처리 과정을 거쳐 랜덤포레스트 분류기를 이용하여 안구의 정상과 비정상 상태를 진단한다. Mask R-CNN 알고리즘의 검출 성능 향상을 위해 이미지 증강 작업을 실시하여 학습을 진행하였으며 검출 정확도 측정을 위한 평가지표로는 다이스 유사계수와 Mean Accuracy를 사용하였다. 비교군으로는 Faster R-CNN 기법을 사용하였고 본 연구를 통한 검출 성능은 평균 90%의 다이스 계수를 통한 정확도를 나타내었으며 Mean Accuracy의 경우 91% 정확도의 검출 성능을 보였다. 검출된 병리증상을 토대로 랜덤포레스트 분류기를 학습하여 당뇨병성 망막 병증을 진단한 경우 99%의 정확도를 보였다.
갑상샘이 포함된 인체모형 팬텀을 이용하여 임상에서 많이 적용하는 NECK CT 프로토콜 중 관전압을 변화 적용하여 스캔 후 Raw data를 이용하여 FBP, ASIR-V, DLIR 재구성기법 적용 영상 획득하여 120 kVp FBP 재구성 영상 기준 DLIR 재구성기법의 유용성을 알아보았다. 그 결과 DLIR 재구성기법 적용 시 CTDIvol 이 감소하였으며, 특히 동일 관전압에서 FBP 적용보다 ASIR-V, DLIR 재구성 시 낮은 선량에서도 기준 스캔 조건으로 획득한 화질에 도달하였다. 또한, SNR, CNR 분석결과 DLIR 재구성 영상이 SNR, CNR 값이 높게 분석되었고, SSIM분석결과 100 kVp, DLIR 재구성 영상이 SSIM 지수가 1에 근사하게 측정되어 원본 영상에 대한 재구성 영상의 유사도가 높은 것으로 분석되었다(p>0.05). 본 연구결과를 활용하여 임상 영상 평가를 시행하여 보완하고 다양한 해부학적 구조에 적용 가능한 알고리즘을 추가 개발한다면 검사 선량을 현재 보다 낮추면서 화질을 유지할 수 있어 임상 적용 시 유용할 것으로 생각된다.
산업부산물인 페로실리콘을 사용한 시멘트 콘크리트의 내구성능을 평가하기 위하여 페로실리콘의 치환율을 3단계로 변화시켜 제조한 시멘트 경화체의 염화물침투저항성, 알칼리실리카 반응성에 대하여 평가하였다. 페로실리콘을 사용한 시멘트 콘크리트의 내구성능은 화학조성이 유사한 실리카흄과 비교하여 평가하였으며, 에너지 분산형 X선 분광법, 공극측정 및 X선 회절분석 등 기기분석을 통하여 페로실리콘 콘크리트의 미세 구조적 특성을 고찰하였다. 그 결과, 페로실리콘을 10 % 치환한 경우 OPC콘크리트보다 높은 강도발현 특성을 보인 반면 치환율이 20 %, 30 % 증가할수록 압축강도는 낮게 발현되었다. 그러나 염화물 침투저항성에 대한 결과는 치환율이 증가할수록 우수한 결과를 나타내었으며, 실리카흄을 사용한 경우에 비하여 페로실리콘을 사용한 콘크리트의 내구성은 약간 떨어지지만 OPC에 비해서는 우수한 결과를 나타내었다. 이는 페로실리콘의 실리카(SiO2) 함량이 높아 더 많은 C-S-H 겔을 생성하여 더 밀실한 공극 구조를 만들었기 때문이라 생각된다. 길이변화시험을 통한 규산염 바인더에 대한 알칼리실리카반응의 위험성은 대부분 0.2 % 미만으로 나타났으며, 페로실리콘 및 실리카흄을 사용한 모르타르 모두 치환율이 증가할수록 알칼리실리카 반응에 대한 저항성은 우수한 것으로 나타났다. 따라서 고가의 실리카흄을 사용하는 대신 산업 폐기물을 재사용하면 제조 중 환경 부하를 줄이고 비용을 절약할 수 있을 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.