The Journal of the Institute of Internet, Broadcasting and Communication
/
v.17
no.2
/
pp.75-82
/
2017
In this paper, we consider social network analysis that focuses on community detection. Social networks embed community structure characteristics, i.e., a society can be partitioned into many social groups of individuals, with dense intra-group connections and much sparser inter-group connections. Exploring the community structure allows predicting as well as understanding individual's behaviors and interactions between people. In this paper, based on the interaction information extracted from a real-life Bluetooth contacts, we aim to reveal the social groups in a society of mobile carriers. Focusing on estimating the closeness of relationships between network entities through different similarity measurement methods, we introduce the clustering scheme to determine the underlying social structure. To evaluate our community detection method, we present the evaluation mechanism based on the basic properties of friendship.
This study developed the procedure and method for the accuracy assessment of unmanned boat survey data, based on the reservoir water depth data of Misan Reservoir, measured by the manned and unmanned boats in 2009 by Korea Rural Community Corporation. In the first step, this study devised the method to extract the contour map of NGIS data in AutoCAD to generate easily the reservoir boundary map used to set the survey range of reservoir water depth and to test the survey accuracy. The surveyed data coordinate systems of the manned and the unmanned boat were also unified by using ArcGIS for the standards of accuracy assessment. In the accuracy assessment, the spatial correlation coefficient of the grid maps of the two measurement results was 0.95, showing high pattern similarity, although the average error was high at 78cm. To analyze in more detail assessment, this study generated randomly the 3,250m transverse profile route (PR), and then extracted grid values of water depth on the PR. In the results of analysis to the extracted depth data on PR, the error average difference of the unmanned boat measurements was 73.18cm and the standard deviation of the error was 55cm compared to the manned boat. This study set these values as the standard for the correction value by average shift and noise removal of the unmanned boat measurement data. By correcting the unmanned boat measurements with these values, this study has high accuracy results, the reservoir water depth and surface area curve with R2 = 0.97 and the water depth and storage volume curve with R2 = 0.999.
Prior to making choices among online products and services, consumers often search online product reviews written by other consumers. Online product reviews have great influences on consumer behavior because they are believed to be more reliable than information provided by sellers. However, ever-increasing lists of product reviews make it difficult for consumers to find the right information efficiently. A customized search mechanism is a method to provide personalized information which fits the user's requirements. This study examines effects of a customized search mechanism and perceived similarity between consumers and product reviewers on consumer behaviors. More specifically, we address the following research questions: (1) Can a customized search mechanism increase perceived similarity between product review authors and readers? (2) Are product reviews perceived as more credible when product reviews were written by the authors perceived similar to them? (3) Does credibility of product reviews have a positive impact on acceptance of product reviews? (4) Does acceptance of product reviews have an influence on purchase intention of the readers? To examine these research questions, a lab experiment with a between-subject factor (whether a customized search mechanism is provided or not) design was employed. In order to enhance mundane realism and increase generalizability of the findings, the experiment sites were built based on a real online store, cherrya.com (http://www.cherrya.com/). Sixty participants were drawn from a pool that consisted of undergraduate and graduate students in a large university. Participation was voluntary; all the participants received 5,000 won to encourage their motivation and involvement in the experiment tasks. In addition, 15 participants, who selected by a random draw, received 30,000 won to actually purchase the product that he or she decided to buy during the experiment. Of the 60 participants, 25 were male and 35 were female. In examining the homogeneity between the two groups, the results of t-tests revealed no significant difference in gender, age, academic years, online shopping experience, and Internet usage. To test our research model, we completed tests of the measurement models and the structural models using PLS Graph version 3.00. The analysis confirmed individual item reliability, internal consistency, and discriminant validity of measurements. The results show that participants feel more credible when product reviews were written by the authors perceived similar to them, credibility of product reviews have a positive impact on acceptance of product reviews, and acceptance of product reviews have an influence on purchase intention of the readers. However, a customized search mechanism did not increase perceived similarity between product review authors and readers. The results imply that there is an urgent need to develop a better customized search tool in order to increase perceived similarity between product review authors and readers.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.19
no.6
/
pp.14-25
/
2020
This research proposes a methodology to evaluate the rationality of passengers' route choice who make trips within Seoul metropolitan subway based on smart card data. The rationality of user route choice is divided into the degree of determinacy and similarity concepts as basic principle. Determinacy is the degree to which the route selected by the passenger is identical to the system optimal path. Similarity indicates the degree to which the route is similar to the system optimal path. The K-path search method is used for path enumeration, which allows for measurement of determinacy. To assess determinacy within similarity, transfer tag data of private operators is used. Consequently, the concept of similarity applied to the model is such that the passenger's path choice is identical to the path taken using the tag reader. Results show that the determinacy of appearance of the shortest path (K=1) is 90.4%, while the similarity of appearance as K=(2-10) is 7.9%, summing to 98.3%. This indicates that trips on the metropolitan subway network are being rationally explained. 1.7% of irrational trips are attributed to the unexplainable error term that occurs due to the diversity of passengers.
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
2002.05c
/
pp.27-30
/
2002
In this paper, we were investigated leakage current properties of outdoor insulator on climatic environmental factor. Contamination is one of the most important factor to determine the performance of insulator. Thus, it is very important to exam the contamination degree on the outdoor insulator. There are many limits, such as reliability of data, interval of measurement and similarity of environmental conditions, in conventional method. So, we measured phase and leakage current of outdoor insulator using the temperature & humidity chamber. In this investigation, phase difference was measured to compare the variance of phase difference with the contamination degree and relative humidity.
A new procedure is proposed for assessing probabilistic condition of structures considering effect of measured data uncertainty. In this procedure, multiple Finite Element (FE) models are identified by using weighting vectors that represent the uncertainty conditions of measured data. The distribution of structural parameters is analysed using a Principal Component Analysis (PCA) in relation to uncertainty conditions, and the identified models are classified into groups according to their similarity by using a K-means method. The condition of a structure is then assessed probabilistically using FE models in the classified groups, each of which represents specific uncertainty condition of measured data. Yeondae bridge, a steel-box girder expressway bridge in Korea, is used as an illustrative example. Probabilistic condition of the bridge is evaluated by the distribution of load rating factors obtained using multiple FE models. The numerical example shows that the proposed method can quantify uncertainty of measured data and subsequently evaluate efficiently the probabilistic condition of bridges.
Purpose In this study, first, we try to make embedding results that reflect the characteristics of both professional and general documents. In addition, when disparate documents are put together as learning materials for natural language processing, we try to propose a method that can measure the degree of reflection of the characteristics of individual domains in a quantitative way. Approach For this study, the Korean Supreme Court Precedent documents and Korean Wikipedia are selected as specialized documents and general documents respectively. After extracting the most similar word pairs and similarities of unique words observed only in the specialized documents, we observed how those values were changed in the process of embedding with general documents. Findings According to the measurement methods proposed in this study, it was confirmed that the degree of specificity of specialized documents was relaxed in the process of combining with general documents, and that the degree of dissolution could have a positive correlation with the size of general documents.
Journal of the Korean Institute of Intelligent Systems
/
v.24
no.3
/
pp.292-297
/
2014
As a Social Network Service (SNS) has become an integral part of our everyday lives, millions of users can express their opinion and share information regardless of time and place. Hence sentiment analysis using micro-blogs has been studied in various field to know people's opinion on particular topics. Most of previous researches on movie reviews consider only positive and negative sentiment and use it to predict movie rating. As people feel not only positive and negative but also various emotion, the sentiment that people feel while watching a movie need to be classified in more detail to extract more information than personal preference. We measure sentiment distributions of each movie from tweets according to the Thayer's model. Then, we find similar movies by calculating similarity between each sentiment distributions. Through the experiments, we verify that our method using micro-blogs performs better than using only genre information of movies.
This paper presents a method for designing circular template used in similarity measurement for image registration. Circular template has translation and rotation invariant property, which results in correct matching of control points for image registration under the condition of translation and rotation between reference and sensed images. Circular template consisting of the pixels located on the multiple circumferences of the circles whose radii vary from zero to a certain distance, is converted to two-dimensional Discrete Polar Coordinate Matrix (DPCM), whose elements are the pixels of the circular template. For sensed image, the same type of circular template and DPCM are created by rotating the circular template repeatedly by a certain degree in the range between 0 and 360 degrees and then similarity is calculated using mutual information of the two DPCMs. The best match is determined when the mutual information for each rotation angle at each pixel in search area is maximum. The proposed algorithm was tested using KOMPSAT-2 images acquired at two different times and the results indicate high accurate matching performance under image rotation.
The Journal of Korean Institute of Next Generation Computing
/
v.15
no.5
/
pp.64-74
/
2019
Although a non-rigid registration has high demands in clinical practice, it has a high computational complexity and it is very difficult for ensuring the accuracy and robustness of registration. This study proposes a method of applying a non-rigid registration to 3D magnetic resonance images of brain in an unsupervised learning environment by using a deep-learning network. A feature vector between two images is produced through the network by receiving both images from two different patients as inputs and it transforms the target image to match the source image by creating a displacement vector field. The network is designed based on a U-Net shape so that feature vectors that consider all global and local differences between two images can be constructed when performing the registration. As a regularization term is added to a loss function, a transformation result similar to that of a real brain movement can be obtained after the application of trilinear interpolation. This method enables a non-rigid registration with a single-pass deformation by only receiving two arbitrary images as inputs through an unsupervised learning. Therefore, it can perform faster than other non-learning-based registration methods that require iterative optimization processes. Our experiment was performed with 3D magnetic resonance images of 50 human brains, and the measurement result of the dice similarity coefficient confirmed an approximately 16% similarity improvement by using our method after the registration. It also showed a similar performance compared with the non-learning-based method, with about 10,000 times speed increase. The proposed method can be used for non-rigid registration of various kinds of medical image data.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.