• 제목/요약/키워드: Similarity Algorithm

검색결과 1,152건 처리시간 0.025초

퍼지 이론에 기초한 머신-셀 구성방법 (A machine-cell formation method based on fuzzy set)

  • 이노성;임춘우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1565-1568
    • /
    • 1997
  • In this paper, a fuzzy based machine-cell formation algorithm for cellular manufacturing is presented. The fuzzy lovic is employed to express the degree of appropriateness when alternative machnies are specified to process a part shape. For machine grouping, the similarity coefficient based approach is used. The algorithm produces efficient machine cells and part families which maximize the similarity values.

  • PDF

온톨로지 트리기반 멀티에이전트 세만틱 유사도매칭 알고리즘 (A Multi-Agent Improved Semantic Similarity Matching Algorithm Based on Ontology Tree)

  • ;조영임
    • 제어로봇시스템학회논문지
    • /
    • 제18권11호
    • /
    • pp.1027-1033
    • /
    • 2012
  • Semantic-based information retrieval techniques understand the meanings of the concepts that users specify in their queries, but the traditional semantic matching methods based on the ontology tree have three weaknesses which may lead to many false matches, causing the falling precision. In order to improve the matching precision and the recall of the information retrieval, this paper proposes a multi-agent improved semantic similarity matching algorithm based on the ontology tree, which can avoid the considerable computation redundancies and mismatching during the entire matching process. The results of the experiments performed on our algorithm show improvements in precision and recall compared with the information retrieval techniques based on the traditional semantic similarity matching methods.

Trajectory Distance Algorithm Based on Segment Transformation Distance

  • Wang, Longbao;Lv, Xin;An, Jicun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권4호
    • /
    • pp.1095-1109
    • /
    • 2022
  • Along with the popularity of GPS system and smart cell phone, trajectories of pedestrians or vehicles are recorded at any time. The great amount of works had been carried out in order to discover traffic paradigms or other regular patterns buried in the huge trajectory dataset. The core of the mining algorithm is how to evaluate the similarity, that is, the "distance", between trajectories appropriately, then the mining results will be accordance to the reality. Euclidean distance is commonly used in the lots of existed algorithms to measure the similarity, however, the trend of trajectories is usually ignored during the measurement. In this paper, a novel segment transform distance (STD) algorithm is proposed, in which a rule system of line segment transformation is established. The similarity of two-line segments is quantified by the cost of line segment transformation. Further, an improvement of STD, named ST-DTW, is advanced with the use of the traditional method dynamic time warping algorithm (DTW), accelerating the speed of calculating STD. The experimental results show that the error rate of ST-DTW algorithm is 53.97%, which is lower than that of the LCSS algorithm. Besides, all the weights of factors could be adjusted dynamically, making the algorithm suitable for various kinds of applications.

Dynamic gesture recognition using a model-based temporal self-similarity and its application to taebo gesture recognition

  • Lee, Kyoung-Mi;Won, Hey-Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권11호
    • /
    • pp.2824-2838
    • /
    • 2013
  • There has been a lot of attention paid recently to analyze dynamic human gestures that vary over time. Most attention to dynamic gestures concerns with spatio-temporal features, as compared to analyzing each frame of gestures separately. For accurate dynamic gesture recognition, motion feature extraction algorithms need to find representative features that uniquely identify time-varying gestures. This paper proposes a new feature-extraction algorithm using temporal self-similarity based on a hierarchical human model. Because a conventional temporal self-similarity method computes a whole movement among the continuous frames, the conventional temporal self-similarity method cannot recognize different gestures with the same amount of movement. The proposed model-based temporal self-similarity method groups body parts of a hierarchical model into several sets and calculates movements for each set. While recognition results can depend on how the sets are made, the best way to find optimal sets is to separate frequently used body parts from less-used body parts. Then, we apply a multiclass support vector machine whose optimization algorithm is based on structural support vector machines. In this paper, the effectiveness of the proposed feature extraction algorithm is demonstrated in an application for taebo gesture recognition. We show that the model-based temporal self-similarity method can overcome the shortcomings of the conventional temporal self-similarity method and the recognition results of the model-based method are superior to that of the conventional method.

Semantic Word Categorization using Feature Similarity based K Nearest Neighbor

  • Jo, Taeho
    • Journal of Multimedia Information System
    • /
    • 제5권2호
    • /
    • pp.67-78
    • /
    • 2018
  • This article proposes the modified KNN (K Nearest Neighbor) algorithm which considers the feature similarity and is applied to the word categorization. The texts which are given as features for encoding words into numerical vectors are semantic related entities, rather than independent ones, and the synergy effect between the word categorization and the text categorization is expected by combining both of them with each other. In this research, we define the similarity metric between two vectors, including the feature similarity, modify the KNN algorithm by replacing the exiting similarity metric by the proposed one, and apply it to the word categorization. The proposed KNN is empirically validated as the better approach in categorizing words in news articles and opinions. The significance of this research is to improve the classification performance by utilizing the feature similarities.

A Density Peak Clustering Algorithm Based on Information Bottleneck

  • Yongli Liu;Congcong Zhao;Hao Chao
    • Journal of Information Processing Systems
    • /
    • 제19권6호
    • /
    • pp.778-790
    • /
    • 2023
  • Although density peak clustering can often easily yield excellent results, there is still room for improvement when dealing with complex, high-dimensional datasets. One of the main limitations of this algorithm is its reliance on geometric distance as the sole similarity measurement. To address this limitation, we draw inspiration from the information bottleneck theory, and propose a novel density peak clustering algorithm that incorporates this theory as a similarity measure. Specifically, our algorithm utilizes the joint probability distribution between data objects and feature information, and employs the loss of mutual information as the measurement standard. This approach not only eliminates the potential for subjective error in selecting similarity method, but also enhances performance on datasets with multiple centers and high dimensionality. To evaluate the effectiveness of our algorithm, we conducted experiments using ten carefully selected datasets and compared the results with three other algorithms. The experimental results demonstrate that our information bottleneck-based density peaks clustering (IBDPC) algorithm consistently achieves high levels of accuracy, highlighting its potential as a valuable tool for data clustering tasks.

시퀀스 요소 기반의 유사도를 이용한 시퀀스 데이터 클러스터링 (Mining Clusters of Sequence Data using Sequence Element-based Similarity Measure)

  • 오승준;김재련
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2004년도 추계학술대회
    • /
    • pp.221-229
    • /
    • 2004
  • Recently, there has been enormous growth in the amount of commercial and scientific data, such as protein sequences, retail transactions, and web-logs. Such datasets consist of sequence data that have an inherent sequential nature. However, only a few of the existing clustering algorithms consider sequentiality. This study presents a method for clustering such sequence datasets. The similarity between sequences must be decided before clustering the sequences. This study proposes a new similarity measure to compute the similarity between two sequences using a sequence element. Two clustering algorithms using the proposed similarity measure are proposed: a hierarchical clustering algorithm and a scalable clustering algorithm that uses sampling and a k-nearest neighbor method. Using a splice dataset and synthetic datasets, we show that the quality of clusters generated by our proposed clustering algorithms is better than that of clusters produced by traditional clustering algorithms.

  • PDF

Clustering method for similar user with Miexed Data in SNS

  • Song, Hyoung-Min;Lee, Sang-Joon;Kwak, Ho-Young
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권11호
    • /
    • pp.25-30
    • /
    • 2015
  • The enormous increase of data with the development of the information technology make internet users to be hard to find suitable information tailored to their needs. In the face of changing environment, the information filtering method, which provide sorted-out information to users, is becoming important. The data on the internet exists as various type. However, similarity calculation algorithm frequently used in existing collaborative filtering method is tend to be suitable to the numeric data. In addition, in the case of the categorical data, it shows the extreme similarity like Boolean Algebra. In this paper, We get the similarity in SNS user's information which consist of the mixed data using the Gower's similarity coefficient. And we suggest a method that is softer than radical expression such as 0 or 1 in categorical data. The clustering method using this algorithm can be utilized in SNS or various recommendation system.

Image Denoising via Fast and Fuzzy Non-local Means Algorithm

  • Lv, Junrui;Luo, Xuegang
    • Journal of Information Processing Systems
    • /
    • 제15권5호
    • /
    • pp.1108-1118
    • /
    • 2019
  • Non-local means (NLM) algorithm is an effective and successful denoising method, but it is computationally heavy. To deal with this obstacle, we propose a novel NLM algorithm with fuzzy metric (FM-NLM) for image denoising in this paper. A new feature metric of visual features with fuzzy metric is utilized to measure the similarity between image pixels in the presence of Gaussian noise. Similarity measures of luminance and structure information are calculated using a fuzzy metric. A smooth kernel is constructed with the proposed fuzzy metric instead of the Gaussian weighted L2 norm kernel. The fuzzy metric and smooth kernel computationally simplify the NLM algorithm and avoid the filter parameters. Meanwhile, the proposed FM-NLM using visual structure preferably preserves the original undistorted image structures. The performance of the improved method is visually and quantitatively comparable with or better than that of the current state-of-the-art NLM-based denoising algorithms.

온톨로지 기반의 용어 정의 비교 및 유사도를 고려한 의미 매핑 (Semantic Mapping of Terms Based on Their Ontological Definitions and Similarities)

  • 정원철;이재현;서효원
    • 한국CDE학회논문집
    • /
    • 제11권3호
    • /
    • pp.211-222
    • /
    • 2006
  • In collaborative environment, it is necessary that the participants in collaboration should share the same understanding about the semantics of terms. For example, they should know that 'COMPONENT' and 'ITEM' are different word-expressions for the same meaning. In order to handle such problems in information sharing, an information system needs to automatically recognize that the terms have the same semantics. So we develop an algorithm mapping two terms based on their ontological definitions and their similarities. The proposed algorithm consists of four steps: the character matching, the inferencing, the definition comparing and the similarity checking. In the similarity checking step, we consider relation similarity and hierarchical similarity. The algorithm is very primitive, but it shows the possibility of semi-automatic mapping using ontology. In addition, we design a mapping procedure for a mapping system, called SOM (semantic ontology mapper).