Journal of Korea Society of Industrial Information Systems
/
v.11
no.5
/
pp.18-27
/
2006
Rapid increase of the amount of music data demands for a new method that allows efficient similarity retrieval of music genre using audio features in music databases. To build this similarity retrieval, an indexing techniques that support audio features as a time-series pattern and data mining technologies are needed. In this paper, we address the development of a system that retrieves similar genre music based on the indexing techniques. We first propose the structure of content-based music genre retrieval system based on the time-series pattern index file and data mining technologies. In addition, we implement the time-series pattern index file using audio features and present performance analysis of the time-series pattern index file for similar genre retrieval. The experiments are performed on real data to verify the performance of the proposed method.
Music evokes human emotions or creates music moods through various low-level musical features. Typical music clip consists of one or more moods and this can be used as an important criteria for determining the similarity between music clips. In this paper, we propose a new music retrieval scheme based on the mood change patterns of music clips. For this, we first divide music clips into segments based on low level musical features. Then, we apply K-means clustering algorithm for grouping them into clusters with similar features. By assigning a unique mood symbol for each cluster, we can represent each music clip by a sequence of mood symbols. Finally, to estimate the similarity of music clips, we measure the similarity of their musical mood sequence using the Longest Common Subsequence (LCS) algorithm. To evaluate the performance of our scheme, we carried out various experiments and measured the user evaluation. We report some of the results.
The Journal of Korean Association of Computer Education
/
v.8
no.5
/
pp.109-118
/
2005
In this paper, we present a music retrieval system that compares the geometric structure of a melody specified by a user with those in a music database. The system finds matches between a query melody and melodies in the database by analyzing both structural and contextual features. The retrieval method is based on the geometric hashing algorithm which consists of two steps; the preprocessing step and the recognition step. During the preprocessing step, we divide a melody into several fragments and analyze the pitch and duration of each note of the fragments to find a structural feature. To find a contextual feature, we find a main chord for each fragment. During the recognition step, we divide the query melody specified by a user into several fragments and search through all fragments in the database that are structurally and contextually similar to the melody. A vote is cast for each of the fragments and the music whose total votes are the maximum is the music that contains a matching melody against the query melody. Using our approach, we can find similar melodies in a music database quickly. We can also apply the method to detect plagiarism in music.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.8
no.3
/
pp.192-195
/
2008
People have tendency of forgetting music title, though they easily remember particular part of music. If a music search system can find the title through a part of melody, this will provide very convenient interface to users. In this paper, we propose an algorithm that enables this type of search using feature transformation function. The original music is transformed to new feature information with sequential melodies. When a melody that is a part of search music is given to the system, the music retrieval system searches the music similar to the feature information of the melody. Moreover, this transformation function can be easily extended to various music recognition systems.
Ha, Jin-Seok;Ku, Kyong-I;Park, Jae-Hyun;Kim, Yoo-Sung
The KIPS Transactions:PartD
/
v.10D
no.3
/
pp.547-558
/
2003
From the viewpoint of that music melody has the similar features to time-series data, music melody is transformed to a time-series data with normalization and corrections and the similarity between melodies is defined as the Euclidean distance between the transformed time-series data. Then, based the similarity between melodies of a music object, melodies are clustered and the representative of each cluster is extracted as one of theme melodies for the music. To construct the theme melody index, a theme melody is represented as a point of the multidimensional metric space of M-tree. For retrieval of user's query melody, the query melody is also transformed into a time-series data by the same way of indexing phase. To retrieve the similar melodies to the query melody given by user from the theme melody index the range query search algorithm is used. By the implementation of the prototype system using the proposed theme melody index we show the effectiveness of the proposed methods.
In this paper, an automatic construction method of theme melody index for large music database and an associative content-based music retrieval mechanism in which the constructed theme melody index is mainly used to improve the users' response time are proposed. First, the system automatically extracted the theme melody from a music file by the graphical clustering algorithm based on the similarities between motifs of the music. To place an extracted theme melody into the metric space of M-tree, we chose the average length variation and the average pitch variation of the theme melody as the major features. Moreover, we added the pitch signature and length signature which summarize the pitch variation pattern and the length variation pattern of a theme melody, respectively, to increase the precision of retrieval results. We also proposed the associative content-based music retrieval mechanism in which the k-nearest neighborhood searching and the range searching algorithms of M-tree are used to select the similar melodies to user's query melody from the theme melody index. To improve the users' satisfaction, the proposed retrieval mechanism includes ranking and user's relevance feedback functions. Also, we implemented the proposed mechanisms as the essential components of content-based music retrieval systems to verify the usefulness.
Database community focuses on the similar music retrieval systems for music database when a humming query is given. One of the approaches is converting the midi data to time series, building their indices and performing the similarity search on them. Queries based on humming can be transformed to time series by using the known pitch detection algorithms. The recently suggested algorithm, scaled and warped matching, is based on dynamic time warping and uniform scaling. This paper proposes Humming BIRD(Humming Based sImilaR mini music retrieval system) using sliding window and center-aligned scaled and warped matching. Center-aligned scaled and warped matching is a mixed distance measure of center-aligned uniform scaling and time warping. The newly proposed measure gives tighter lower bound than previous ones which results in reduced search space. The empirical results show the superiority of this algorithm comparing the pruning power while it returns the same results.
Journal of the Korea Society of Computer and Information
/
v.11
no.4
s.42
/
pp.137-145
/
2006
A user remembers a melody as not the combination of pitch and duration which is written in score but the contour which is composed of the relative pitch and duration. Because of the way of remembering a melody the previous Music Information Retrieval Systems which uses keyboard Playing or score as the main input melody are not easily acceptable in Query By Humming Systems. In this paper, we mention about the considerable checkpoints for Query By Humming System and previous researches. And we propose the feature extraction which is similar with the way of remembering a melody and similarity computation algorithms between melody in humming and melody in music. The proposed similarity computation algorithms solves the problem which can be happened when only uses the relative pitches by using relative durations.
With the development of artificial intelligence analysis methods, especially machine learning, various fields are widely expanding their application ranges. However, in the case of classical music, there still remain some difficulties in applying machine learning techniques. Genre classification or music recommendation systems generated by deep learning algorithms are actively used in general music, but not in classical music. In this paper, we attempted to classify opera among classical music. To this end, an experiment was conducted to determine which criteria are most suitable among, composer, period of composition, and emotional atmosphere, which are the basic features of music. To generate emotional labels, we adopted zero-shot classification with four basic emotions, 'happiness', 'sadness', 'anger', and 'fear.' After embedding the opera libretto with the doc2vec processing model, the optimal number of clusters is computed based on the result of the elbow method. Decided four centroids are then adopted in k-means clustering to classify unsupervised libretto datasets. We were able to get optimized clustering based on the result of adjusted rand index scores. With these results, we compared them with notated variables of music. As a result, it was confirmed that the four clusterings calculated by machine after training were most similar to the grouping result by period. Additionally, we were able to verify that the emotional similarity between composer and period did not appear significantly. At the end of the study, by knowing the period is the right criteria, we hope that it makes easier for music listeners to find music that suits their tastes.
Proceedings of the Korean Information Science Society Conference
/
2006.10c
/
pp.183-188
/
2006
허밍을 통한 유사 검색 질의가 주어질 때 효과적으로 음악 데이터베이스를 검색하는 시스템에 대한 연구는 다양한 방향으로 진행되어 왔다. 최근에는 음악 데이터와 허밍 질의를 시계열 데이터로 보고 시계열 데이터 유사 검색과 관련하여 제안되어 왔던 여러 가지 거리 척도(distance measure)나 인덱싱 기법등을 적용하여 효과적으로 질의를 처리하려는 시도가 계속 되고 있다. 허밍 질의의 특성을 고려한 균일 스케일링(Uniform Scaling)을 사용하여 효과적인 유사 검색을 하는 방법은 가장 최근 제시된 방법 중 하나이다. 본 논문에서는 허밍을 통한 유사 검색 시스템인 Humming BIRD(Humming Based similaR miDi music retrieval system)를 제안하고 구현하였다. 슬라이딩 윈도우를 사용하여 음악의 임의의 부분에 대한 허밍 질의를 처리할 수 있도록 하였으며 효율적인 검색을 위해 중심을 일치시킨(center-aligned) 균일 스케일링을 제안하고 이 거리의 하한을 계산하는 하계 함수를 사용하여 탐색 공간(search space)을 효과적으로 줄여 더 빠르고 효과적인 유사 검색을 가능하도록 하였으며 실험을 통해 중심을 일치시킨된 균일 스케일링이 이전과 같은 검색 결과를 얻으면서도 효과적으로 검색함을 탐색 공간을 줄이는 가지치기 성능을 비교함으로써 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.