• Title/Summary/Keyword: Similar Trajectory

Search Result 162, Processing Time 0.018 seconds

Estimation of Hydrodynamic Coefficients from Sea Trials Using a System Identification Method

  • Kim, Daewon;Benedict, Knud;Paschen, Mathias
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.3
    • /
    • pp.258-265
    • /
    • 2017
  • This paper validates a system identification method using mathematical optimization using sea trial measurement data as a benchmark. A fast time simulation tool, SIMOPT, and a Rheinmetall Defence mathematical model have been adopted to conduct initial hydrodynamic coefficient estimation and simulate ship modelling. Calibration for the environmental effect of sea trial measurement and sensitivity analysis have been carried out to enable a simple and efficient optimization process. The optimization process consists of three steps, and each step controls different coefficients according to the corresponding manoeuvre. Optimization result of Step 1, an optimization for coefficient on x-axis, was similar compared to values applying an empirical regression formulae by Clarke and Norrbin, which is used for SIMOPT. Results of Steps 2 and 3, which are for linear coefficients and nonlinear coefficients, respectively, was differ from the calculation results of the method by Clarke and Norrbin. A comparison for ship trajectory of simulation results from the benchmark and optimization results indicated that the suggested stepwise optimization method enables a coefficient tuning in a mathematical way.

Variations of Airborne Fungal Spore Composition due to the Asian Dust Trajectories (황사 이동 경로에 따른 대기 부유 곰팡이 포자의 변화)

  • 김종호;여환구
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.1
    • /
    • pp.69-76
    • /
    • 2004
  • Asian Dust samples were collected in the ambient air of Seosan, Western Korea, in spring of 2000∼2002. PM (Particulate Matter) concentrations were 199,8$\mu\textrm{g}$/㎥ in the first Asian Dust period (March, 23∼24) and 249.4$\mu\textrm{g}$/㎥ in the second period (April, 7∼9) of 2000. Compared with the concentrations in 2000, relatively low PM concentrations, 157.3$\mu\textrm{g}$/㎥ were measured in the periods of 2001 (April, 24∼26). Especially high PM concentration 953.1$\mu\textrm{g}$/㎥ were measured in the periods of 2002 (March, 21∼22). The variation in the PM concentration was observed according to the time for the formation of Asian dust. Considering the particle size distributions of Asian dust, a high concentration was also observed in coarse particle region. The results of backward trajectory model showed the route of the dust storms from northern area of Mongol and Gobi desert. Various mycelia grown from fungal spores were observed on the PM samples and identified at the genus level. All the genera from the three years (2000∼2002), Fusarium, Aspergillus, Penicillium, Basipetospora, Epicoccum and Monotospora are hyphomycetes in the division Fungi imperfecti (Deuteromycota). Fungal composition on the dust sample in March, 2000 was similar to the result of March, 2002. However, the result of April, 2001 was obviously different from the other dust periods. The variations of fungal compositions between the dust periods could be caused by the trajectories of the dust storms.

The Aerodynamic Characteristics by the Insect Wing Tip Trajectory in Hovering Flight (정지 비행에서의 곤충 날개 궤적에 따른 공기역학적 특성)

  • Cho, Hun-Kee;Joo, Won-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.506-511
    • /
    • 2009
  • Insect flight is adapted to cope with each circumstance by controlling a variety of the parameters of wing motion in nature. Many researchers have struggled to solve the fundamental concept of insect flight, but it has not been solved yet clearly. In this study, to find the most effective flapping wing dynamics, we conducted to analyze CFD data on fixing some of the optimal parameters of wing motion such as stoke amplitude, flip duration and wing rotation type and then controlled the deviation angle by fabricating wing tip motion. Although all patterns have the similar value of lift coefficient and drag coefficient, pattern A(pear-shape type) indicates the highest lift coefficient and pattern H(pear-shape type) has the lowest lift coefficient among four wing tip motions and three deviation angles. This result suggest that the lift and drag coefficient depends on the angle of attack and the deviation angle combined, and it could be explained by delayed stall and wake capture effect.

Analysis Software based on Center of Pressure to Improve Body Balance using Smart Insole

  • Moon, Ho-Sang;Goo, Se-Jin;Byun, Sang-Kyu;Shin, Sung-Wook;Chung, Sung-Taek
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.202-208
    • /
    • 2020
  • Body balance necessary for ordinary daily activities can be undermined by diverse causes. In this study, as a way to control such a problem, we have produced smart insole as a wearable device in the form of insole and developed analysis software evaluating body balance, which measures ground reaction force applied to each area of sole and Center of Pressure (COP). The software visualized changes in COP positions while a user was moving and average COP positions, and it is also capable of measuring the COP values in the Anterior-Posterior (AP) and Medial-Lateral (ML) areas of feet. Through gait analysis, it can analyze the time of walking, strides, speed, COP trajectory while walking, etc. In addition, we have developed training contents for body balance improvement designed in consideration of Y-Balance Test and Timed Up and Go (TUG) Test. They were established in virtual reality similar to daily living environment so that people can expect more effective training results regardless of places.

Study on The Electron-Beam Optics in The Micro-Column for The Multi-Beam Lithography (다중빔 리소그래피를 위한 초소형 컬럼의 전자빔 광학 해석에 관한 연구)

  • Lee, Eung-Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.4
    • /
    • pp.43-48
    • /
    • 2009
  • The aim of this paper is to describe the development of the electron-beam optic analysis algorithm for simulating the e-beam behavior concerned with electrostatic lenses and their focal properties in the micro-column of the multi-beam lithography system. The electrostatic lens consists of an array of electrodes held at different potentials. The electrostatic lens, the so-called einzel lens, which is composed of three electrodes, is used to focus the electron beam by adjusting the voltages of the electrodes. The optics of an electron beam penetrating a region of an electric field is similar to the situation in light optics. The electron is accelerated or decelerated, and the trajectory depends on the angle of incidence with respect to the equi-potential surfaces of the field. The performance parameters, such as the working distances and the beam diameters are obtained by the computational simulations as a function of the focusing voltages of the einzel lens electrodes. Based on the developed simulation algorithm, the high performance of the micro-column can be achieved through optimized control of the einzel lens.

  • PDF

Gait Implementation of a Biped Robot with Smooth Walking Pattern (유연한 보행 형태를 갖는 이족보행로봇의 걸음새 구현)

  • No, Gyeong-Gon;Gong, Jeong-Sik;Kim, Jin-Geol;Kim, Gi-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.7
    • /
    • pp.43-50
    • /
    • 2002
  • This paper presents the new gait implementation of a biped robot with smooth walking using 3-dimensional continuous trunk motion and kick action of ankle joints. Trajectory generation ova trunk is performed not on a unit gait but on a whole walking interval. In applying kick action such as heel-touch or toe-off, varying coordinate system was employed for the simplification of the kinematic analysis. Desired ZMP (zero moment point) is also changed to implement the efficient kick action. As a result, balancing motion of the proposed gait was much more decreased than that of conventional one. Moreover, robot\\`s walking behavior is very smooth, natural and similar to the pace of a human. The walking experiment system is composed of eight AC servo motors and a DSP controller. The walking simulation and the experimental results are shown using the proposed new walking algorithm.

Experimental and Numerical Studies in a Vortex Tube

  • Sohn Chang-Hyun;Kim Chang-Soo;Jung Ui-Hyun;Lakshmana Gowda B.H.L
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.418-425
    • /
    • 2006
  • The present investigation deals with the study of the internal flow phenomena of the counterflow type vortex tube using experimental testing and numerical simulation. Visualization was carried out using the surface tracing method, injecting dye on the vortex tube wall using a needle. Vortex tube is made of acrylic to visualize the surface particle tracing and the input air pressure was varied from 0.1MPa to 0.3MPa. The experimentally visualized results on the tube show that there is an apparent sudden changing of the trajectory on the vortex tube wall which was observed in every experimental test case. This may indicate the stagnation position of the vortex flow. The visualized stagnation position moves towards the vortex generator with increase in cold flow ratio and input pressure. Three-dimensional computational study is also conducted to obtain more detailed flow information in the vortex tube. Calculated total pressure, static pressure and total temperature distributions in the vortex tube were in good agreement with the experimental data. The computational particle trace on the vortex tube wall is very similar to that observed in experiments.

Social Pedestrian Group Detection Based on Spatiotemporal-oriented Energy for Crowd Video Understanding

  • Huang, Shaonian;Huang, Dongjun;Khuhroa, Mansoor Ahmed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3769-3789
    • /
    • 2018
  • Social pedestrian groups are the basic elements that constitute a crowd; therefore, detection of such groups is scientifically important for modeling social behavior, as well as practically useful for crowd video understanding. A social group refers to a cluster of members who tend to keep similar motion state for a sustained period of time. One of the main challenges of social group detection arises from the complex dynamic variations of crowd patterns. Therefore, most works model dynamic groups to analysis the crowd behavior, ignoring the existence of stationary groups in crowd scene. However, in this paper, we propose a novel unified framework for detecting social pedestrian groups in crowd videos, including dynamic and stationary pedestrian groups, based on spatiotemporal-oriented energy measurements. Dynamic pedestrian groups are hierarchically clustered based on energy flow similarities and trajectory motion correlations between the atomic groups extracted from principal spatiotemporal-oriented energies. Furthermore, the probability distribution of static spatiotemporal-oriented energies is modeled to detect stationary pedestrian groups. Extensive experiments on challenging datasets demonstrate that our method can achieve superior results for social pedestrian group detection and crowd video classification.

A Study on Trend Sharing in Segmental-feature HMM (분절 특징 은닉 마코프 모델에서의 경향 공유에 관한 연구)

  • 윤영선
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.7
    • /
    • pp.641-647
    • /
    • 2002
  • In this paper, we propose the reduction method of the number of parameters in the segmental-feature HMM using trend quantization method. The proposed method shares the trend information of the polynomial trajectories by quantization. The trajectory is obtained by the sequence of feature vectors of speech signals and can be divided by trend and location information. The trend indicates the variation of consequent frame features, while the location points to the positional difference of the trajectories. Since the trend occupies the large portion of SFHMM, if the trend is shared, the number of parameters maybe decreases. To exploit the proposed system the experiments are performed on TIMIT corpus. The experimental results show that the performance of the proposed system is roughly similar to that of previous system. Therefore, the proposed system can be considered one of parameter reduction method.

MRR model for the CMP Process Considering Relative Velocity (상대속도를 고려한 CMP 공정에서의 연마제거율 모델)

  • 김기현;오수익;전병희
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.225-229
    • /
    • 2004
  • Chemical Mechanical Polishing(CMP) process becomes one of the most important semiconductor processes. But the basic mechanism of CMP still does not established. Slurry fluid dynamics that there is a slurry film between a wafer and a pad and contact mechanics that a wafer and a pad contact directly are the two main studies for CMP. This paper based on the latter one, especially on the abrasion wear model. Material Removal Rate(MRR) is calculated using the trajectory length of every point on a wafer during the process time. Both the rotational velocity of a wafer and a pad and the wafer oscillation velocity which has omitted in other studies are considered. For the purpose of the verification of our simulation, we used the experimental results of S.H.Li et al. The simulation results show that the tendency of the calculated MRR using the relative velocity is very similar to the experimental results and that the oscillation effect on MRR at a real CMP condition is lower than 1.5%, which is higher than the relative velocity effect of wafer, and that the velocity factor. not the velocity itself, should be taken into consideration in the CMP wear model.