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Abstract 
 

Social pedestrian groups are the basic elements that constitute a crowd; therefore, detection 
of such groups is scientifically important for modeling social behavior, as well as practically 
useful for crowd video understanding. A social group refers to a cluster of members who 
tend to keep similar motion state for a sustained period of time. One of the main challenges 
of social group detection arises from the complex dynamic variations of crowd patterns. 
Therefore, most works model dynamic groups to analysis the crowd behavior, ignoring the 
existence of stationary groups in crowd scene. However, in this paper, we propose a novel 
unified framework for detecting social pedestrian groups in crowd videos, including dynamic 
and stationary pedestrian groups, based on spatiotemporal-oriented energy measurements. 
Dynamic pedestrian groups are hierarchically clustered based on energy flow similarities and 
trajectory motion correlations between the atomic groups extracted from principal 
spatiotemporal-oriented energies. Furthermore, the probability distribution of static 
spatiotemporal-oriented energies is modeled to detect stationary pedestrian groups. 
Extensive experiments on challenging datasets demonstrate that our method can achieve 
superior results for social pedestrian group detection and crowd video classification. 

Keywords: Pedestrian group detection, spatiotemporal-oriented energy, crowd video 
analysis, video classification 
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1. Introduction 

Crowd video behavior analysis has been extensively studied due to its various applications 
to crowd video surveillance, including crowd simulation, behavior prediction, and abnormal 
event detection [1]. In these studies, crowd behavior modeling has been based on either 
single individuals [2] or the flow of a large crowd [3]. Recently, the social pedestrian group 
has been identified as the fundamental aspect of crowd videos [4]. This has resulted in new 
challenges in crowd video understanding, due to the complex interactive behaviors among 
crowd pedestrian individuals.  

Previous studies have suggested that the social pedestrian group is a universal 
phenomenon in crowd videos, and approximately 50 to 70% people enter a group during 
casual walking [5]. However, no precise criterion exists for the definition of social pedestrian 
groups. A key challenge in social pedestrian group detection arises from the dynamic 
variations of crowd patterns, where dynamic and stationary pedestrian groups generally exist 
simultaneously and are interchangeable in crowd videos. Certain existing works have 
focused on dynamic pedestrian group detection based on trajectory features clustering [6] or 
graph partitioning [7], while others have focused on stationary pedestrian group detection 
using background modeling [8]. Generally, dynamic and stationary pedestrian groups are 
considered in a disjointed manner, whereas the proposed approach handles the two within a 
common framework. 

Another major issue arises from the fact that social pedestrian groups can yield very 
different intensities as a result of spatial appearance differences and time-varying dynamics. 
We believe that appropriate crowd motion representation is the solution to this challenge: 
motion representation that is invariant to crowd spatial patterns allows social pedestrian 
groups to be recognized independently of individual appearance, while a representation that 
can capture the crowd’s space-time structure enables easier determination of the pedestrian 
group dynamics.  

Based on the above motivations, this paper presents a spatiotemporal-oriented energies 
based framework for social pedestrian group detection in crowds of varying densities. 
Examples of the different-density crowd scenes under consideration are provided in Fig. 1. 
Crowd density refers to the number of  people per square meter. Fig. 1(a) is a low-density 
crowd scene, Fig. 1(b) shows a medium-density crowd scene and Fig. 1(c) is a high-density 
scene. To this end, we define a social pedestrian group as a collection of people who interact 
with one another, have a common destination, and share similar spatiotemporal states during 
a given period. We propose a hierarchical clustering algorithm for locating dynamic 
pedestrian groups, and a probability model for extracting stationary pedestrian groups. In 
particular, we firstly derive atomic dynamic groups based on principal spatiotemporal-
oriented energies [9] within a short time, to capture the dynamic correlation structure of a 
crowd video with robustness to purely spatial appearance. Then, we extract atomic group 
trajectories tracked from principal spatiotemporal-oriented energies to describe the local 
motion features of atomic groups. Finally, we introduce a bottom-up clustering framework 
for detecting dynamic groups, based on flow-field feature similarities and trajectory motion 
feature correlations between atomic groups. Furthermore, stationary groups are captured 
using the probability distribution of slight local motion energies in static objects. 
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（a） （b） （c）  
Fig. 1. Example frames from different-density crowd scenes. 

The main contributions of this work can be summarized as follows.  
 We introduce a novel atomic pedestrian group representation method to capture the 

underlying spatiotemporal structure of crowd scenes. According to the atomic group, flow-
field and trajectory motion features based on a spatiotemporal-oriented energy set are 
developed for dynamic group detection. 
 We propose a hierarchical framework for clustering atomic pedestrian groups of a crowd 

scene into dynamic groups. Similarities among atomic groups are extracted based on their 
social attributes. We devise a probability model based on static spatiotemporal energies to 
extract stationary pedestrian groups with slight local motion features. It is important to note 
that dynamic and stationary pedestrian groups can be recognized simultaneously using our 
framework. 
 We design a set of descriptors to describe social pedestrian group attributes, and our 

experiments demonstrate that the proposed group descriptors are effective for crowd video 
classification. 

2. 2. Related Work 
The modeling of dynamic pedestrian groups in crowd scenes remains a challenging issue in 
the computer vision field. The majority of works have been influenced by social-
psychological and biological theories. 

2.1 Crowd Behavior Analysis 
Crowd behavior analysis has been intensively studied in computer vision fields for 
describing the individual and group behaviors in crowed scenes [1, 4]. The current crowd 
behavior methods can be roughly divided into two categories: microscopic-level approach 
and macroscopic-level approach.  Microscopic-level approach needs to model individual 
agent’s behavior and then spread individual behavior to crowd dynamic.  Helbing et al. 
firstly introduced social force model [10], in which the behavior of an individual agent is 
subject to a long-range force caused by other individual agents and environmental 
components. Many crowd modeling works have extended Helbing’s model to various video 
surveillance applications, such as abnormal behavior detection [11], people tracking [12]. 
Blue et al. adopted Celluar Automaton (CA) model pedestrian’s behavior [13]. The 
preference matrix specified the probabilities of pedestrian’s   walking direction and speed 
was used to model pedestrian flow. Another example was the Social Comparison Theory 
(SCT) where pedestrian evaluated their state by comparing themselves to similar others [14]. 
Differing from microscopic-level approach, macroscopic-level approach reviews crowd as 
an entity instead of modeling the motion of individual. Mehran et al. [15] proposed a 
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streakline  flow representation  for crowd dynamic based on Lagrangian framework. Su et al. 
[16] implemented crowd behavior perception based on characteristics of  the spatio-temporal 
viscous fluid field. The crowd motion feature was extracted based on the spatio-temporal 
fluid and force fields. Using trajectory features to analyze crowd behavior [17-19] is another 
popular macroscopic-level approach. For instance, Zhou et al. [17] modeled crowd behavior 
by extracting individual pedestrian’s trajectories obtained by KLT tracker. The advantage of 
using trajectory feature is that long-time interactions between different individuals can be 
easily modeled.  
 

2.2 Modeling Group Structure 
The first work on group modeling was proposed by Reynolds, and used a complex particle 
system to simulate the motion of individual and flocks of birds [20]. The revolutionary 
concept was that group behavior can be determined by simple local rules for group members, 
as opposed to certain enforced global conditions. Subsequently, more research studies 
specific to human pedestrian groups have been developed. The leader-follower model [21], 
which modeled crowd behavior by setting different agents, such as trained personnel, leaders, 
and followers, has been the cornerstone for several crowd modeling and analysis works, 
ranging from human crowd simulation to social group modeling. Some works [22, 23] 
modeled the process of crowd group formation  using the concept of F-formations which 
described the proper  social space organization in a crowd social relationship. Recently, 
certain studies have focused on modeling the group structure in a pedestrian crowd [24, 25].  

2.3 Pedestrian Group Detection in Crowd 
Only recently have approaches to detecting dynamic crowd groups exhibited promising 
results. Crowd group clustering methods can be placed into three categories: graph-based, 
probability model-based, and trajectory-based clustering.  

In graph-based approaches, a graph is constructed based on individuals’ similarities; for 
example, Hu et al. [26] constructed a directed neighborhood graph based on motion flow 
vector similarities, and then detected the motion group. Chang et al. [7] partitioned a crowd 
group by using a weighted graph, where its edges expressed the probability of individuals 
belonging to the same group. However, these approaches are often too simplistic for further 
inference of complex group characteristics. Probability model-based approaches attempt to 
model crowd groups by learning motion features with prior knowledge. Zanotto et al. [27] 
proposed the Dirichlet process mixture model (DPMM) using online Bayesian non-
parametrics to discover groups of people in real surveillance scenarios. Zhou et al. [28] 
learned the semantic regions in crowded scenes by means of a random field topic (RFT) 
model, in which Markov random fields were used prior to enforcing spatial and temporal 
coherence during the learning process. Probability models offer the advantage of modeling 
spatiotemporal relationships at the global level; however, they usually require specifying the 
number of crowd groups. Finally, trajectory-based approaches rely on single pedestrian 
trajectories. Ge et al. [29] proposed a bottom-up hierarchical clustering method for 
determining small groups in pedestrian crowds. The proximity and velocity trajectory 
features are applied to evaluate the inter-group similarities. However, this type of approach 
relies on extracting optical-flow-based trajectories, with drawbacks being that group 
detection remains sensitive to illumination, viewpoint, and crowd density variations.  
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Above all, an interesting unsupervised approach was recently presented by Shao et al. [19],  
in which a collective transition prior was learned from a coherent trajectory cluster. Group 
descriptors were then formulated to describe the inter- and intra-group-based properties, 
according to the collective transition prior of the group. Furthermore, Solera et al. [30] 
suggested the use of a correlation clustering method to detect social groups. They learned the 
affinity among crowd groups through a structural SVM framework, and designed a set of 
motion features to characterize the physical and social identity of pedestrian trajectories. 
Dynamic pedestrian group detection is significant for crowd behavior analysis, while another 
important factor, namely stationary pedestrian crowd groups, has a powerful effect on crowd 
flow and is crucial to crowd behavior modeling. Yi et al. [8] recently modeled pedestrian 
behaviors from stationary crowd groups. They analyzed pedestrians’ walking paths by means 
of personalized energy maps, which included scene layout, moving pedestrians, and 
stationary groups. The major advantages of this research include incorporating stationary 
groups as a factor for modeling pedestrian behavior; however, complex stationary time 
estimation is required.  

In the end, the proposed method has several novel characteristics differed to the 
aforementioned studies: (i) we uses inter-group and intra-group relationship with 
pedestrian’s spatiotemporal-oriented energies attribution to model social pedestrian groups, 
which is the key social paradigm underpinning the current research. (ii) we focus on 
automatically detecting stationary groups at the same time as dynamic groups without 
stationary time estimation of foreground pixels. 

3. 3. Pedestrian Group Detection 
We define a pedestrian group as a collection of people with a common destination and 
similar spatiotemporal states. Given a short video clip of τ frames, we hierarchically cluster 
the atomic dynamic groups based on principal spatiotemporal-oriented energies in order to 
capture dynamic pedestrian groups in a crowd scene. The similarities among atomic dynamic 
groups are represented based on energy flow-field and spatiotemporal energy trajectory 
features. Furthermore, stationary pedestrian groups are detected based on the probability 
distribution of static spatiotemporal energies in a crowd scene. 

3.1 Atomic Pedestrian Group Extraction 
Dynamic pedestrian group detection is challenging, due to the spatiotemporal variability of 
crowd pedestrians [25]. We assume that dynamic pedestrian groups are composed of atomic 
pedestrian groups with similar spatiotemporal structures, within a short period. Atomic 
pedestrian groups of a crowd scene are captured by using spatiotemporal-oriented energies 
[9]. The desired energies are realized using the third derivative of Gaussian 
filters, 𝐺𝐺3(𝜃𝜃, 𝛿𝛿) = 𝑘𝑘 𝜕𝜕3

𝜕𝜕𝜃𝜃3
𝑒𝑒𝑒𝑒𝑒𝑒 (−𝑥𝑥2+𝑦𝑦2+𝑡𝑡2

2𝛿𝛿2
), where θ indicates the 3D direction of the filters 

and δ the scale. We estimate spatiotemporal-oriented energy as follows: 
2

3( ; ) ( ) ,θ δ θ δ
∈Ω

= ∗∑
x

x , | ( , ) x |soeE G I                                       (1) 

where  x = (x, y, t)T represents the spatiotemporal coordinates of a pixel in a crowd video 
sequence, Ω is a sub-region around x, ∗ denotes convolution, and I(x) is the input crowd 
video. Furthermore, the subscript soe in Esoe denotes spatiotemporal-oriented energy.  
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Due to the separable characteristics of Gaussian steerable filters, the estimation of 
spatiotemporal-oriented energy need not include conducting convolution for all spatial 
directions [31]. Specifically, a dynamic pattern in a crowd video with a certain 
spatiotemporal orientation corresponds to a plane through the origin in the frequency domain. 
We extract spatiotemporal-oriented energies based on the energy along a set of planes. Each 
plane 𝑧𝑧(𝑛𝑛�)  is first parameterized by its unit normal, 𝑛𝑛� = (𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦,𝑛𝑛𝑡𝑡)𝑇𝑇 , and then the 
spatiotemporal energy along this plane, with normal n� and spatial orientation, is given as  

( ; , )= ( ; , )
θ

δ θ δ
∈
∑̂

( )

ˆx x ,
i k

k soe i
z n

E n E                                          (2) 

where θiis one of  N + 1  orientations corresponding to the specified frequency domain plane 
z(n�k) and N = 3 is the order of the derivative of the Gaussian filter(See [32] for details).  

This initial measure of local spatiotemporal energy in (2) is sensitive to additional image 
variations (such as illumination variation and camera motion). To provide a purer 
measurement of spatiotemporal orientation, irrespective of photometric variations, each 
energy measurement for the selected orientation is normalized as 

1

( ; , )( ; , )= ,
( ; , )

δ
δ

δ ε
=

+∑
ˆxˆ ˆx
ˆx

k
k M

k
k

E nE n
E n

                                         (3) 

where ϵ is a small constant to avoid numerical instability at points with low overall energy, 
and M is the number of  specified frequency planes 

The point-wise measurement in (3) can capture the power of the local space-time motion 
pattern along the orientation in question. In our energy measurement implementation, we 
extract nine spatiotemporal-oriented energies. For the purpose of illustration, Fig. 2 displays 
the nine energies extracted in a single crowd sequence frame. It can be observed that the 
extracted energies can capture the local spatiotemporal structure along different orientations. 
For example, the rightward energy in Fig. 2(c) shows a strong response to cars driving east, 
the down-left energy in Fig. 2(h) captures the movement of the black car turning left, and the 
static energy in Fig. 2(b) exhibits an obvious response to the pedestrians waiting at the zebra 
crossing. 

 

(a) frame (b) (c) 

(c) 

(d) (e) 

(f) (g) (h) (i) (j) 

Fig. 2. Examples of crowd sequence spatiotemporal-oriented energies from the dataset: (a) shows a 
frame from the dataset; (b)-(j) illustrate the spatiotemporal energies for the following directions of 

n� = (nx, ny, nt)T: static (b), rightward (c), upper right (d), upward (e), upper left (f),  
leftward (g), down left (h), downward (i), and down right (j). 
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The nine extracted energy measurements can capture the local motion pattern along 
different orientations. However, a global motion pattern must also be extracted, which can be 
achieved by combining the oriented energies in the principal energy measurement, as follows: 

1( ; )= ( ; , ),δ δ≤ ≤
ˆ ˆ ˆx xp k M kE max E n                                        (4) 

where M denotes the number of spatiotemporal orientations, and the subscript  Ρ  in E�Ρ 
denotes the principal spatiotemporal energy. 

The principal spatiotemporal energy is simply a point-wise measurement of the crowd 
video motion information, disregarding the correlation between motion particles. Thus, we 
use atomic pedestrian groups to denote the simple, similar motion patterns of pedestrians 
within a short time. The atomic pedestrian groups are extracted by dividing the principal 
spatiotemporal energy flow into a given time window [3], and in our experiment, the time 
window length is three frames. An example of the principal spatiotemporal energy and 
atomic pedestrian groups for a running sequence is shown in Fig. 3.  

 

frame The principal 
spatiotemporal energy The atomic groups

Fig. 3.  Illustration of principal spatiotemporal energy and atomic dynamic groups. 

 

3.2 Spatiotemporal-oriented Energy Tracking 
We apply spatiotemporal-oriented energy trajectories to capture the dynamic structure of 
atomic groups, and our goal is to track all of the sampled points in the crowd video. The 
principal spatiotemporal energy points in a grid space are first densely sampled, then the 
sampled points need to match the new points in the following frame by estimating inter-
frame motion. In particular, the point-wise principal spatiotemporal energy measurements of 
(4) are directly incorporated to define the current sampled points, as follows: 

( ; )= ( ; ),δ δˆx xpP E                                                       (5) 
where =x ( , , )x y t  represents the feature point coordinates and  δ is the scale corresponding 
to a particular data channel. The inter-frame motion of feature points is estimated according 
to the following affine motion model [33]: 

1 2( ; ) ( ) ,= + +W , v , Tx y x v y v                                                (6) 

where  ( ),x y  are pixel coordinates and  1 2( )=v , Tv v are motion parameters. 
Estimation of the motion parameters 𝒗𝒗 is based on the energy conservation and spatial 

coherence constraints, which are similar to the optical flow constraint equations [34]. The 
resulting error function, to be minimized with respect to P, is defined as 

2( )( ( ; )) ( ; )+ ( ; )) ,
δ

ω δ δ
∈ℜ

∇∑ ∑
( , )

x W v xT
t

x y
x, y P x, y P                        (7) 
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where ( )ω x, y  is a weighting function, ( ; )δ∇ xT P  is the first-order spatial derivatives of 
the principal spatiotemporal energy measurements in the current frame, ( ; )δxtP  denotes the 
first-order temporal derivative for computing the difference between the current and next 
frame, and ℜ is a given feature points window. 

All of the sampled feature points in each spatial scale are tracked separately. Given a point 
coordinate =( , )t t tC x y  in frame tI  (frame at time t ),its tracked coordinate in frame 1+tI  
(frame at time 𝑡𝑡 + 1) is defined as  

1 1 1 ,( , )=( , )+( )| ,+ + += ∗ ( )v
t tt t t t t t x yC x y x y K                               (8) 

where K  is the median filtering kernel. This median filter is more robust to outliers than the 
bilinear interpolation according to the work of Sun et al. [35]. 

All of the tracked coordinates from the selected feature point are concatenated to form a 
trajectory 1 2( , , ...)+ += t t ttr C C C . For each sampled feature point, if the tracking processing is 
unsuccessful, a new feature point within the neighborhood window is sampled for tracking. 
The trajectory length is restricted to ℓ frames, in order to avoid long-distance drift from the 
initial positions, and the value of ℓ is empirically set to 20 for the experiments. 

 

3.3 Dynamic Pedestrian Group Detection 
Since atomic pedestrian groups can capture simple, similar motion patterns within a short 
period, it is essential to construct dynamic pedestrian groups with a time-varying common 
motion pattern, by clustering atomic pedestrian groups. For this purpose, we present a two-
step hierarchical clustering scheme. Assuming that   a set of atomic groups 

1 2 = { , , ... }mATG ATG ATG ATG    is extracted from the crowd scene in section 3.1, and  a set 
of trajectories 1 2= { , , ... }ntr tr tr tr is tracked in section 3.2, the two-step clustering scheme 
proceeds as follows. 

Step 1: Cluster atomic groups: We first view atomic groups as separate clusters, then 
gradually obtain larger groups by merging two clusters based on the inter-group distance, 
which measures the motion similarity between two groups within a given period. In 
particular, similar groups tend to maintain similar motion trajectories and spatiotemporal 
energy flow patterns. Based on this concept, the inter-group motion and flow-field distances 
are formulated.  

The inter-group motion distance between two atomic groups over time is defined as 
follows: 

𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑚𝑚 �𝐴𝐴𝐴𝐴𝐺𝐺𝑖𝑖,𝐴𝐴𝐴𝐴𝐺𝐺𝑗𝑗� = 𝑚𝑚𝐷𝐷𝑛𝑛 (|⋂�𝑇𝑇𝑇𝑇𝑖𝑖,   𝒩𝒩(𝑇𝑇𝑇𝑇𝑗𝑗)�|
|𝑇𝑇𝑇𝑇𝑖𝑖|

, |⋂�𝑇𝑇𝑇𝑇𝑗𝑗,   𝒩𝒩(𝑇𝑇𝑇𝑇𝑖𝑖)�|
�𝑇𝑇𝑇𝑇𝑗𝑗�

),                       (9) 

where iATG ATG∈ , jATG ATG∈ , iTR tr∈  , jTR tr∈ ,  | . | denotes the input set cardinality,  

and 𝒩𝒩(TRi) refers to all neighbor trajectories of every trajectory from   iTR  in a given time 
window [𝓉𝓉, 𝓉𝓉 + 𝒹𝒹]. Furthermore, 

 
( ) ( ( )) ,∈ → += 

ii ctr TR t t dN TR N ctr                                            (10) 
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where ( )→ +t t dN ctr  denotes the neighbor trajectories of the current trajectory, and can be 
represented as the intersection of the  𝒦𝒦 nearest neighbors of the current trajectory point in 
the time window, as follows: 

( ) ( ),+
→ + == t d

t t d i t iN ctr N p                                                 (11) 
where ictr TR∈ , p denotes the current position of trajectory ctr , and ( )iN p  denotes the 𝒦𝒦 
nearest neighbors of p  based on Euclidean distance.  

The inter-group flow-field distance measures the difference in the spatiotemporal 
orientation distribution of the atomic groups. The principal spatiotemporal energy 
measurements orientations of (4) are directly incorporated to denote the spatiotemporal 
orientation of a voxel, as follows: 

( ; , )| 1 ,δ= ≤ ≤, ,
ˆ ˆ{ x }x y t k kd argmax E n k M                                (12) 

where , ,x y td  represents the directional number for the pixel ( , , )x y t  and M  indicates the 
number of spatiotemporal orientations. Then, the inter-group flow-field distance is defined as 
follows: 

𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝑓𝑓 �𝐴𝐴𝐴𝐴𝐺𝐺𝑖𝑖,𝐴𝐴𝐴𝐴𝐺𝐺𝑗𝑗� = ||ℎ(𝐴𝐴𝐴𝐴𝐺𝐺𝑖𝑖) − ℎ(𝐴𝐴𝐴𝐴𝐺𝐺𝑗𝑗)||22 ,                               (13) 

where iATG ATG∈ , jATG ATG∈ , ( )ih ATG  is the normalized histogram of the directional 

numbers , ,x y td  obtained from atomic group  iATG . 
A bottom-up hierarchical, agglomerative method is adopted to cluster atomic groups based 

on the merging criterion, as follows 

�
𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑚𝑚 �𝐴𝐴𝐴𝐴𝐺𝐺𝑖𝑖,𝐴𝐴𝐴𝐴𝐺𝐺𝑗𝑗� ≥  1

2

𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
𝑓𝑓 �𝐴𝐴𝐴𝐴𝐺𝐺𝑖𝑖,𝐴𝐴𝐴𝐴𝐺𝐺𝑗𝑗� ≤  𝜆𝜆

 ,                                                   (14) 

where λ  is a threshold specified in the experiment. The rationale behind this merging 
criterion is that two atomic groups can be merged when every trajectory in 𝐴𝐴𝐴𝐴𝐺𝐺𝑖𝑖 is close to 
at least half of those trajectories, and the orientation difference in energy flow between two 
atomic groups is lower than a particular threshold. During each iteration of the merging 
process, atomic groups satisfying (14) are merged into new groups, and the process 
terminates when no atomic groups qualify for merging.  
 

（a） （b）  
Fig.  4. Illustrative groups from step 1. 
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Step 2: Cluster to determine social groups: Atomic groups with a close physical 
distance and similar flow-field features are clustered as a group during step 1, as illustrated 
in Fig. 4. However, certain groups are ambiguous according to the definition. For example, 
in Fig. 4(b), the blue, yellow, and green groups are clustered into separate groups due to the 
large distance between them, but they should in fact belong to the same social group. In 
order to address this issue, we further propose the extraction of social pedestrian groups by 
clustering the groups obtained in step 1. Considering   a set of extracted groups { } 1

m
i i

G g
=

=  

extracted in step 1, the flow-field distance ( , )f
inter i jDis g g  and velocity distance 

( , )v
inter i jDis g g  between these are measured, and those with similar spatiotemporal flow 

orientations and motion velocities are merged into new social groups. The value of 
( , )f

inter i jDis g g can be obtained using (13), while the velocity distance is measured according 
to the averaged velocity correlation of group trajectories, as follows: 

1 1( , )= ,
( , )

τ τ

τ τ τ

+

∈ ∈ =
∑ ∑

,

..
| | | | || || . || ||

i j

z kt d
v
inter i j z k

z g k g ti j

v vDis g g
d max g g v v

         (15) 

where   ∈ ∈,i jg G g G ,  τ
zv  denotes the velocity of trajectory point z  at time τ , and | |ig

represents the number of trajectories included in group ig . 
In comparison with previous trajectory-based group detection methods [19,29], which 

clustered groups based on local motion similarities among trajectories, our scheme utilizes 
the global spatiotemporal motion pattern to determine social correlations among atomic 
groups.  

3.4 Stationary Pedestrian Group Detection 
There is no general agreement on the definition for what constitutes a stationary pedestrian 
group. However, based on [4, 8], such a group can be defined as a cluster of members who 
tend to remain together in a fixed position for a certain period. Furthermore, crowd 
pedestrians of a stationary group often exhibit certain local movements or interactions, rather 
than maintaining an absolute static state. Based on the above observation, static structures 
and dynamic groups are first differentiated by using static spatiotemporal energies, and then 
stationary foreground pixels with local feature variation within a given time window are 
grouped into stationary pedestrian groups by means of Gaussian mixture model [36] 
clustering. 

From the discussion in section 3.1, it can be observed that the static spatiotemporal 
energies defined in (4) can capture the static structure of a crowd sequence. However, the 
above formulation exhibits an obvious drawback, in that static spatiotemporal energies have 
as high a response to slow-moving pedestrians as to static background objects. Fig. 5 
illustrates the static energies’ responses to crowd sequences with differing scene intensities. 
It can be seen that static spatiotemporal energies show a high response to static objects (for 
example the building in Fig. 5(d), stationary pedestrians waiting at the zebra crossing in Fig. 
5(e), and the billboard in Fig. 5(f). In contrast, the static spatiotemporal energies show a 
similar response to slow-moving pedestrians and static objects. 
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Low Medium High

(a) (b) (c)

(d) (e) (f)  
Fig. 5. Examples showing the static spatiotemporal energy representation captured from different 

crowd videos: (a) to (c) illustrate the original images from crowd videos, while (d) to (f) illustrate the 
static spatiotemporal energies of the original images. 

 

In order to eliminate the effect of slow-moving pedestrians, static spatiotemporal energy 
maps are filtered for modeling static regions using a temporal median filter [37]. Then, the 
extracted static regions are processed by means of morphologic operations to obtain more 
compact static pedestrians. Fig. 6(a) and (b) show the results of extracting static pedestrians 
from a street sequence: Fig. 6(a) depicts a sampled frame of the filtered crowd sequence, 
while Fig. 6(b) shows the extracted static pedestrians. It is observed that both static 
background objects (such as the traffic signal poles and garbage bin) and stationary 
pedestrian groups appear in the segmented static objects; however, moving cars are not 
included. 

However, stationary pedestrian groups and static background objects exhibit different 
motion features, because stationary pedestrian groups often show certain local motions 
within a period; for example, members of stationary groups tend to move their arms and legs 
or interact with one another. In response to the above observations, slight local motion 
energies are derived to analyze the motion patterns that occur at each static object. The 
point-wise spatiotemporal energies of (3), defined in section 3.1, are prone to fail in 
distinguishing between coherent motion (such as the large-scale motion resulting from the 
vehicle’s movement in Fig. 6(a)) and slight local motion (such as that resulting from people 
waiting at the zebra crossing in Fig. 6(a)) . In this framework, the oriented energies in the 
vertical channels are directly incorporated to define slight local motion energies, as follows 

4 8( ; )= ( ; , )+ ( ; , ),δ δ δˆ ˆ ˆˆ ˆx x xslE E n E n                                  (16) 
where the subscript sl in  ( ; )sl jE δˆ x  denotes slight motion energy, 4n̂  represents the upward 

spatiotemporal orientation and 8n̂  represents the downward spatiotemporal orientation. 
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In contrast to the point-wise directional energies of (3), the slight motion energies  can 
capture slight local movements along vertical orientations. For example, a stationary 
pedestrian group with slight local movement (such as people waiting at a crosswalk) may 
exhibit little motion in vertical orientations; however, when taking the sum of the upward 
and downward motions, the slight motion energies of (16) of the stationary pedestrian groups 
obtain a higher response than static background objects. However, the static background 
objects that remain absolutely static will yield a stable response within a given time window. 
Fig. 6(c) illustrates the slight motion energies of static objects in a street sequence frame.  

 

（a） （b） （c）  
Fig. 6. Example showing slight motion energies captured from a street sequence: (a) frame, (b) static 

objects, and (c) slight motion energies. 

 

Stationary pedestrian groups are detected by using an adaptive Gaussian mixture model 
[36] in which the number of components is constantly adjusted for each object. A reasonable 
time window T is selected, and an object’s features at time 𝑡𝑡  are represented as 

( ; )...... ( ; )T sl t sl t TE E Eδ δ+= ˆ ˆ{ x x } . Then the probability of the current object belonging to 
static background objects (SBO) or stationary pedestrians groups (SPG) is defined as follows: 

 
2

1
( ; )| , )= ( ; , ,δ π δ µ σ

=

+ ∑δ δ δˆˆ ˆˆ ˆ ˆ( x ( x | )
m

sl t T i sl t i i
i

p E E SBO SPG N E I                    (17) 

where m is the number of Gaussian components, iµ̂
δ  and iσ̂  are the mean and variance, 

respectively, of the Gaussian component. Finally, static background objects are modeled 
according to the ℬ largest distributions. 

4. 4. Experiments and Discussion 
It is challenging to evaluate and compare existing group detection approaches, due to the 
lack of a commonly accepted dataset with ground truth pedestrian groupings. In our 
experiments, all the ground truths of dynamic and stationary groups were manually 
determined and discussed by multiple coders. Furthermore, all of the experiments were 
implemented on a MATLAB platform. The results reported in the following sections were 
obtained on a server machine with 3.4 GHz Intel Core i7 CPUs and 32 GB RAM, by using a 
single thread. 
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4.1 Dynamic Pedestrian Group Detection Results 
We performed experiments to detect dynamic groups on a dataset including 120 different 
crowd videos selected from the CUHK [19], UCSD [38], and BIWI [39] datasets, as well as 
our own collected crowd videos. CUHK crowd dataset consists of 474 video clips from 215 
scenes. The resolutions of CUHK videos are variable from 480 360×  to 1920 1080× .  The 
BIWI dataset contains  two  sequences, the  ETH  and HOTEL sequence,  recorded from 
birds-eye view with a total of 650 tracks over 20 minutes.  Both CUHK and BIWI dataset 
provide the ground truth of group detection. UCSD dataset is organized into two subsets 
called Ped1 and Ped2. Ped1 contains 70 image sequences, at a spatial resolution of 158 × 238. 
Ped2 has 28 videos  with a resolution of 360 × 240. The group ground truth of UCSD is 
manually annotated  by three annotators.  Our selected crowd videos consisted of various 
real-word crowd scenes with different pedestrian densities and diversified motion patterns, 
such as walking in a train station, crossing a street, or running a marathon. Fig. 7 shows 
example frames from the dataset. The frame rates and resolutions of the dataset videos differ 
substantially, due to the different public cameras used. We maintained the original frame rate 
and spatial resolution when conducting the experiments. Although the duration of each video 
clip differs, we used only the first 100 frames from each video for detecting dynamic groups 
in the experiment. 

We compare our dynamic group detection method with three state-of–the-art approaches: 
the streakline representation of crowd flow (SFD) [40], scene-independent group detector 
(SGD) approach [19], and coherent filtering detector (CFD) method [6]. In order to 
demonstrate further the effectiveness of our approach, we also include the results of a 
general motion segmentation method (LPD) [3]. 

A. Qualitative comparison of dynamic group detection 
Fig. 7 compares dynamic pedestrian group detection results for the different methods, and 

we include the manually labeled ground truth in the first row. From Fig. 7, it can be seen that 
our approach can achieve superior dynamic group detection compared to the existing 
methods. For example, in sequence 1, our approach effectively extracts the u-shaped crowd 
group, while the CFD and SGD methods fail because the trajectories extracted from this 
over-crowded scene are extremely complex. For sequence 2, in which multiple dynamic 
groups exist, our approach precisely distinguishes different pedestrian groups where people 
are walking very close to one another, such as the blue and green groups in sequence 2(f). 
The LPD and SFD methods exhibit low effectiveness in detecting these dynamic groups as a 
result of the flow-field similarity of neighboring pedestrians groups. Furthermore, the CFD 
and SGD methods do not provide satisfying results because the trajectories extracted from 
complex crowd scenes become unreliable, making it challenging for the general trajectory 
clustering method [6] to provide precise dynamic groups. Because the dynamic groups in 
sequence 3 are extremely complex and diverse, the existing methods either fail to 
differentiate among pedestrian groups with different motion directions, or miss certain 
dynamic groups. However, using our approach, pedestrian groups with similar motion 
patterns are identified by means of the hierarchical clustering scheme, such as the green and 
yellow groups in sequence 3(f). For sequence 4, in which stationary groups exist, the existing 
methods mistake the stationary group for a dynamic group; for example, the green group in 
sequence 4(b), the blue, red, and green groups in sequence 4(d), as well as the cerulean, 
orange, and green groups in sequence 4(e). However, our method detects only dynamic 
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pedestrian groups with obvious motion energy, neglecting stationary pedestrian groups with 
slight motion, such as the green group in sequence 4(f).  

 

(1) (2) (3) (4)

(a)

(b)

(c)

(d)

(e)

(f)

 
Fig. 7.  Comparative results of dynamic group detection using five methods. Groups are distinguished 
by colors. (a) Ground truth, (b) LPD results, (c) SFD results, (d) CFD results, (e) SGD results, and (f) 

results of our approach (best viewed in color). 

B. Quantitative comparison  
No uniform metrics exist for evaluating group detection performance. We used the true 

group rate (TGR) and false group rate (FGR) for all sequences in our dataset, to measure the 
overall accuracy of dynamic pedestrian group detection. TGR and FGR are calculated as 
TGR = ∑ TDii

∑ GTii
   and  FGR = ∑ FDii

∑ TDi+FDii
, where TDi, FDi, and GTi are the numbers of true and 

false detected groups, and the ground truth group, respectively. 
In our experiments, a group is considered as being detected correctly only if 60% of its 

members are included. In order to evaluate further the performance of our dynamic 
pedestrian group detection method on different crowd scenes, we divided the 120 
experimental crowd videos into three categories: high-density, medium-density, and low-
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density scenes. Table 1 provides the average TGR and FGR of the three crowd video types 
for the different methods. 

 
Table 1.  Comparative results for all sequences in the dataset 

Methods 
 

Density 

our method LPD SPD CFD SGD 
TGR 
(%) 

FGR 
(%) 

TGR 
(%) 

FGR 
(%) 

TGR 
(%) 

FGR 
(%) 

TGR 
(%) 

FGR 
(%) 

TGR 
(%) 

FGR 
(%) 

High 73.5 10.2 70.2 15.6 72.2 10.8 65.2 21.3 66.2 19.6 
Medium 83.6 13.5 56.8 24.1 58.7 28.5 76.8 18.3 80.4 12.5 

Low 86.4 11.3 57.2 25.2 56.4 32.6 78.9 16.5 82.3 10.2 
 81.2 11.7 61.4 21.6 62.4 23.9 73.6 18.7 76.3 14.1 

 
Table 1 further demonstrates the effectiveness of our dynamic pedestrian group detection 

method. From this table, it can be observed that the LPD and SPD methods effectively detect 
dynamic groups from high-density crowd scenes; however, these two methods perform 
poorly on complex medium- and low-density scenes. Conversely, the performance of the 
CFD and SGD methods on medium- and low-density scenes is significantly superior to that 
of highly crowded scenes, because the trajectories extracted from highly crowded scenes are 
extremely unreliable. However, by combining the advantages of flow-field and trajectory 
features, our method achieves effective performance on different crowd scene types, from 
high to low densities. 

4.2 Stationary Group Detection Results 
In order to more thoroughly evaluate the stationary pedestrian group detection performance, 
we collected ten crowd videos from the Internet. These videos include obvious stationary 
pedestrian groups, and their duration is 5–10 minutes. We manually labeled the stationary 
pedestrian groups in each experimental video. It is worth noting that a pedestrian is labeled 
as background if he/she remains at rest for more than one minute. The experimental video 
sizes differ significantly, and we maintained the original sizes in performing our experiment. 

To evaluate our approach’s effectiveness, we compare our stationary group detection 
method using static spatiotemporal energy with a state-of-the-art approach: spatial-temporal 
and motion filtering (STMF) [41]. We also include a general background subtraction method 
(the codebook method [42]) to further demonstrate the effectiveness of our approach. 
Examples of ground truth and compared stationary pedestrian group detection results are 
shown in Fig.  8. 
 

Groundtruth Our method STMF Codebook method
 

Fig.  8. Stationary pedestrian groups captured using different methods. 
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Table 2 reports the false alarm rate (FAR) and missed detection rate (MDR) for all 

experimental videos. From the table, it can be observed that our method’s FAR is not 
significantly better than the STMF results. This is because the foreground pedestrian is 
labeled as stationary only if its stationary time is more than 20 seconds up to the current 
frame; however, 10 seconds is adapted in this case. Our method’s MDR, however, is clearly 
significantly lower than those of the STMF and codebook methods. This is due to foreground 
pixels with slight motion in a short period easily being considered as background pixels in 
the codebook-based method [37, 38]. 

 
Table 2. Stationary pedestrian group detection accuracy of different methods 

 FAR MDR 

Our detector 21.6% 12.5% 

STMF 22.8% 18.5% 

codebook 28.4% 22.3% 

 

3.5 Crowd Video Classification Results 
In this section, we demonstrate the effectiveness of our dynamic and stationary pedestrian 
group results in applying crowd video classification. We designed three descriptors, 
{𝒟𝒟1,𝒟𝒟2,𝒟𝒟3}, to recognize crowd group attributes, based on the dynamic and stationary 
group detection results in section 3. 𝒟𝒟1 is proposed to characterize the spatiotemporal energy 
distribution of a group, 𝒟𝒟2  the distribution of the primary orientation of spatiotemporal 
energy, and 𝒟𝒟3 describes the shape of the trajectories included in the group. 𝒟𝒟1 to 𝒟𝒟3 are 
computed as follows: 

1 2 3
1       ,= = = ∑( ) ( ) .

| |e d i
i

D h g D h g D T
g

                          (18) 

where  ( )eh g  is the spatiotemporal energy histogram of group 𝒢𝒢 , ( )dh g is the primary 
orientation histogram of 𝒢𝒢, and 𝐴𝐴𝑖𝑖 is the shape descriptor of the current trajectory. 

We compare our crowd video classification results with those of a state-of-the-art 
approach [22]. Similar to the crowd classification implementation [22], we conducted our 
experiment by roughly annotating all 120 crowd clips in section 4.1 into five classes: mixed 
pedestrians walking randomly, crowd walking following a fixed route, crowd merging, 
crowd splitting, and crowd crossing in opposite directions. Most crowd videos can be 
classified generally into these five categories.  

We used a leave-one-video-out experiment. For each run, crowd clips pertaining to one 
category are selected for testing, and the other four category sequences are used as the 
training set. For crowd clips with multiple groups, the average of the descriptors over the 
groups is adopted for video classification. We used the non-linear SVM with an RBF-kernel 
in our experiment. Fig. 9 shows the confusion matrix for the crowd video classification 
based on our method, which demonstrates that the videos are classified into specific 
categories with a high degree of accuracy. 
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Fig.  9. Confusion matrix of crowd video classification (darker color represents higher accuracy). 

Fig. 10 demonstrates the crowd video classification accuracy for each class compared with 
the approach in [22]. It can be seen that our method slightly outperforms the alternative 
approach in general because it captures the social group motion embedded in the complex 
crowd trajectories by simultaneously taking into account the energy flow dynamics. Our 
method significantly outperforms the existing approach in the second experimental video 
type, because the existing approach fails to capture dynamic flow motion in the unorganized 
walking scene. Moreover, the alternative approach requires a hundred-fold longer time than 
our method. 

 
Fig.  10. Per-class accuracy comparison of crowd video classification using different methods. 
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5. 5. Conclusion 
In this paper, we have presented a framework aimed at detecting social pedestrian groups in 
crowd video sequences, which exist in various crowd systems from a vision perspective. The 
low-level feature representation of our social pedestrian groups is based on spatiotemporal-
oriented energies. This energy-based representation is shown to be effective and applicable 
in the detection of both dynamic and stationary pedestrian groups. A robust dynamic 
pedestrian group detection algorithm is proposed by means of hierarchically clustering 
atomic groups. Based on the common-fate principle, atomic groups are clustered according 
to the social properties among them. Stationary pedestrian groups, captured by the static 
structure of the crowd sequence, are detected based on the probability distribution of the 
static spatiotemporal-oriented energies. The experimental results indicate that our proposed 
method can successfully capture social pedestrian groups and effectively classify crowd 
video clips. Extensive experiments on a real-world dataset demonstrate that our method 
outperforms current state-of-the art methods in social pedestrian group detection and crowd 
video classification. In future work, we plan to study ways to describe the attributes of a 
crowd group, and then apply group descriptors to cross-scene crowd video retrieval. 
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