• 제목/요약/키워드: Silver nanoparticles

검색결과 383건 처리시간 0.019초

Facile Preparation of Silver Nanoparticles and Application to Silver Coating Using Latent Reductant from a Silver Carbamate Complex

  • Kim, Kyung-A;Cha, Jae-Ryung;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권2호
    • /
    • pp.505-509
    • /
    • 2013
  • A low temperature ($65^{\circ}C$) thermal deposition process was developed for depositing a silver coating on thermally sensitive polymeric substrates. This low temperature deposition was achieved by chemical reduction of a silver alkylcarbamate complex with latent reducing agent. The effects of acetol as a latent reducing agent for the silver 2-ethylhexylcarbamate (Ag-EHCB) complex and their blend solutions were investigated in terms of reducing mechanism, and the size and shape of silver nanoparticles (Ag-NPs) as a function of reduced temperature and time, and PVP stabilizer concentration were determined. Low temperature deposition was achieved by combining chemical reduction with thermal heating at $65^{\circ}C$. A range of polymer film, sheet and molding product was coated with silver at thicknesses of 100 nm. The effect of process parameters and heat treatment on the properties of silver coatings was investigated.

Synthesis of Silver Nanoparticles from the Decomposition of Silver(I) [bis(alkylthio)methylene]malonate Complexes

  • Lee, Euy-Jin;Piao, Longhai;Kim, Jin-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권1호
    • /
    • pp.60-64
    • /
    • 2012
  • Silver(I) [bis(alkylthio)methylene]malonates were synthesized from the reaction of silver nitrate and potassium [bis(alkylthio)methylene]malonates. The structures of the Ag complexes were characterized with nuclear magnetic resonance (NMR), inductively coupled plasma atomic emission spectrometry (ICP-AES) and elemental analysis. Ag nanoparticles (NPs) were obtained from the decomposition of the Ag complexes in 1,2-dichlorobenzene at $110^{\circ}C$ without an additional surfactant. The average sizes of the Ag NPs are in the range of 5.1-6.3 nm and could be controlled by varying the length of the alkyl chain. The optical properties, crystalline structure and surface composition of Ag NPs were characterized with ultraviolet-visible (UV-visible) spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), gas chromatography-mass spectrometry (GC-MS), X-ray Photoelectron Spectroscopy (XPS) and thermal gravimetric analysis (TGA).

Homogeneously Dispersed Silver Nanoparticles on the Honeycomb-Patterned Poly(N-vinylcarbazole)-cellulose triacetate Composite Thin Films by the Photoreduction of Silver Nitrate

  • Kim, Kwang Il;Basavaraja, C.;Huh, Do Sung
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권5호
    • /
    • pp.1391-1396
    • /
    • 2013
  • The photocontrolled reduction of silver nitrate to silver (Ag) nanoparticles on honeycomb-patterned poly(N-vinylcarbazole) (PVK)-cellulose triacetate (CTA) composite thin films was studied. The composites were prepared via the oxidative polymerization of N-vinylcarbazole with ferric chloride using different CTA concentrations. A honeycomb-patterned film was fabricated by casting the composite solution under humid conditions. Ag particles with a homogeneous distribution were produced by the composite film in a moderate CTA concentration, whereas aggregated Ag was obtained from the pure PVK film.

Antifungal Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi

  • Kim, Sang-Woo;Jung, Jin-Hee;Lamsal, Kabir;Kim, Yun-Seok;Min, Ji-Seon;Lee, Youn-Su
    • Mycobiology
    • /
    • 제40권1호
    • /
    • pp.53-58
    • /
    • 2012
  • This research is concerned with the fungicidal properties of nano-size silver colloidal solution used as an agent for antifungal treatment of various plant pathogens. We used WA-CV-WA13B, WA-AT-WB13R, and WA-PR-WB13R silver nanoparticles (AgNPs) at concentrations of 10, 25, 50, and 100 ppm. Eighteen different plant pathogenic fungi were treated with these AgNPs on potato dextrose agar (PDA), malt extract agar, and corn meal agar plates. We calculated fungal inhibition in order to evaluate the antifungal efficacy of silver nanoparticles against pathogens. The results indicated that AgNPs possess antifungal properties against these plant pathogens at various levels. Treatment with WA-CV-WB13R AgNPs resulted in maximum inhibition of most fungi. Results also showed that the most significant inhibition of plant pathogenic fungi was observed on PDA and 100 ppm of AgNPs.

A Comparison Method of Silver Nanoparticles Prepared by the Gamma Irradiation and in situ Reduction Methods

  • Lee, Chul-Jae;Karim, Mohammad Rezaul;Vasudevan, T.;Kim, Hee-Jin;Raushan, K.;Jung, Maeng-Joon;Kim, Dong-Yeub;Lee, Mu-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권7호
    • /
    • pp.1993-1996
    • /
    • 2010
  • Silver nanoparticles has been prepared by the $\gamma$-irradiation and in situ reduction methods. Based on the Raman spectra, TEM images, X-ray Diffraction (XRD) patterns and UV-vis spectra, the in situ reduction method is more stable and the average size of the silver nanoparticles is also smaller than by the $\gamma$-irradiation reduction method. It is identified that the silver ions interacting with nonbonding electrons of oxygen atom in the carbonyl group of polyvinylpyrrolidone (PVP) by the in situ reduction method. It is also found advantages of the in situ reduction method including no additional reducing agents, without $\gamma$-irradiations treatment and the room temperature treatment suitability.

Templated Formation of Silver Nanoparticles Using Amphiphilic Poly(epichlorohydrine-g-styrene) Film

  • Park, Jung-Tae;Koh, Joo-Hwan;Seo, Jin-Ah;Roh, Dong-Kyu;Kim, Jong-Hak
    • Macromolecular Research
    • /
    • 제17권5호
    • /
    • pp.301-306
    • /
    • 2009
  • This work has demonstrated that a novel amphiphilic poly(epichlorohydrine)-graft-polystyrene (PECH-g-PS) copolymer at 34:66 wt% was synthesized via atom transfer radical polymerization (ATRP) of styrene using PECH as a macroinitiator. The structure of the graft copolymer was characterized by nuclear magnetic resonance ($^1H$ NMR) and FTIR spectroscopy, demonstrating that the "grafting from" method using ATRP was successful. The self-assembled graft copolymer was used as a template film for the in-situ growth of silver nanoparticles from $AgCF_3SO_3$ precursor under UV irradiation. The in situ formation of silver nanoparticles with 6-8 nm in average size in the solid state template film was confirmed by transmission electron microscopy (TEM), UV-visible spectroscopy and wide angle X-ray scattering (WAXS). Differential scanning calorimetry (DSC) also displayed the selective incorporation and the in situ formation of silver nanoparticles within the hydrophilic PECH domains, probably due to stronger interaction of the silvers with the ether oxygens of PECH backbone than that with hydrophobic PS side chains.

Selective Trace Analysis of Mercury (II) Ions in Aqueous Media Using SERS-Based Aptamer Sensor

  • Lee, Chank-Il;Choo, Jae-Bum
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권6호
    • /
    • pp.2003-2007
    • /
    • 2011
  • We report a highly sensitive surface-enhanced Raman scattering (SERS) platform for the selective trace analysis of mercury (II) ions in drinkable water using aptamer-conjugated silver nanoparticles. Here, an aptamer designed to specifically bind to $Hg^{2+}$ ions in aqueous solution was labelled with a TAMRA moiety at the 5' end and used as a Raman reporter. Polyamine spermine tetrahydrochloride (spermine) was used to promote surface adsorption of the aptamer probes onto the silver nanoparticles. When $Hg^{2+}$ ions are added to the system, binding of $Hg^{2+}$ with T-T pairs results in a conformational rearrangement of the aptamer to form a hairpin structure. As a result of the reduced of electrostatic repulsion between silver nanoparticles, aggregation of silver nanoparticles occurs, and the SERS signal is significantly increased upon the addition of $Hg^{2+}$ ions. Under optimized assay conditions, the concentration limit of detection was estimated to be 5 nM, and this satisfies a limit of detection below the EPA defined limit of 10 nM in drinkable water.

Antifungal Effects of Silver Phytonanoparticles from Yucca shilerifera Against Strawberry Soil-Borne Pathogens: Fusarium solani and Macrophomina phaseolina

  • Ruiz-Romero, Paola;Valdez-Salas, Benjamin;Gonzalez-Mendoza, Daniel;Mendez-Trujillo, Vianey
    • Mycobiology
    • /
    • 제46권1호
    • /
    • pp.47-51
    • /
    • 2018
  • In the present study, the characterization and properties of silver nanoparticles from Yucca shilerifera leaf extract (AgNPs) were investigated using UV-visible spectroscopic techniques, zeta potential, and dynamic light scattering. The UV-visible spectroscopic analysis showed the absorbance peaked at 460 nm, which indicated the synthesis of silver nanoparticles. The experimental results showed silver nanoparticles had Z-average diameter of 729 nm with lower stability (195.1 mV). Additionally, our dates revealed that AgNPs showed broad spectrum antagonism ($p{\leq}.05$) against Fusarium solani (83.05%) and Macrophomina phaseolina (67.05%) when compared to the control after nine days of incubation. Finally, AgNPs from leaf extracts of Y. shilerifera may be used as an agent of biocontrol of microorganism of importance. However, further studies will be needed to fully understand the agronanotechnological potentialities of AgNPs from Yucca schidigera.

Extracellular synthesis of silver nanoparticle by Pseudomonas hibiscicola - Mechanistic approach

  • Punjabi, Kapil;Mehta, Shraddha;Yedurkar, Snehal;Jain, Rajesh;Mukherjee, Sandeepan;Kale, Avinash;Deshpande, Sunita
    • Advances in nano research
    • /
    • 제6권1호
    • /
    • pp.81-92
    • /
    • 2018
  • Biosynthesis of nanoparticles has acquired particular attention due to its economic feasibility, low toxicity and simplicity of the process. Extracellular synthesis of nanoparticles by bacteria and fungi has been stated to be brought about by enzymes and other reducing agents that may be secreted in the culture medium. The present study was carried out to determine the underlying mechanisms of extracellular silver nanoparticle synthesis by Pseudomonas hibiscicola isolated from the effluent of an electroplating industry in Mumbai. Synthesized nanoparticles were characterized by spectroscopy and electron microscopic techniques. Protein profiling studies were done using Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (1D-SDS PAGE) and subjected to identification by Mass Spectrometry. Characterization studies revealed synthesis of 50 nm nanoparticles of well-defined morphology. Total protein content and SDS PAGE analysis revealed a reduction of total protein content in test (nanoparticles solution) samples when compared to controls (broth supernatant). 45.45% of the proteins involved in the process of nanoparticle synthesis were identified to be oxidoreductases and are thought to be involved in either reduction of metal ions or capping of synthesized nanoparticles.

액상환원법으로 제조한 은 나노입자의 크기와 분산특성 (Size and Dispersion Characteristics of Silver Nanoparticles Prepared Using Liquid Phase Reduction Method)

  • 이종집
    • 한국산학기술학회논문지
    • /
    • 제17권5호
    • /
    • pp.10-16
    • /
    • 2016
  • 본 연구에서는 PAA를 사용한 액상환원법에 의해 은 나노용액을 합성하는 과정에서 실험변수로서 PAA의 분자량, PAA의 첨가량, 환원제, 분산제, 유기용매 등을 사용하여 은 나노입자의 크기와 분산특성을 조사하였다. UV-Visable spectrophotometer로 은 나노입자의 생성을 확인하였으며, SEM으로 nanometer 영역의 입자크기와 분산특성을 알아냈다. 초음파 파쇄시간이 증가할수록 은 나노입자의 덩어리가 작아지는 경향을 나타내며 3시간 이후에는 1-5개의 작은 덩어리 형태로 은 나노입자가 분산되었다. 초음파 파쇄와 함께 Copolymer with pigment affinic group을 주성분으로 하는 분산제인 BYK-192를 첨가해 주면 49.56-85.75 nm의 크기를 가진 비교적 구형에 가까운 균일한 은 나노입자가 균일하게 완전히 분산되는 되었다. PAA의 분자량이 증가할수록 은 나노입자의 평균크기가 36.82<50.66<56.06 nm 순으로 증가하였다. 또한 PAA의 첨가량이 늘어날수록 은 나노입자의 표면에 덧씌움 현상이 일어나서 은 나노입자의 크기가 커지는 것으로 나타났다. 환원제인 Hydrazine을 첨가하면 환원반응에 의해 많은 수의 핵이 생성되었기 때문에 상대적으로 작은 크기의 입자가 생성되었다. 유기용제(에타놀-아세톤)는 은 나노입자의 규칙적 배열을 도와주었다.