• Title/Summary/Keyword: Silver nano-paste

Search Result 20, Processing Time 0.022 seconds

Fabrication of silver stabilizer layer by coating process using nano silver paste on coated conductor (나노실버페이스트를 사용하는 코팅공정에 의한 coated conductor의 은 안정화층 제조)

  • Lee, Jong-Beom;Kim, Byeong-Joo;Kim, Hye-Jin;Yoo, Yong-Su;Lee, Hee-Gyoun;Hong, Gye-Won
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.1
    • /
    • pp.1-4
    • /
    • 2009
  • Mechanical and electrical properties of silver stabilizer layer of coated conductor, which as prepared with nano silver paste as starting materials, have been investigated, Nano silver paste was coated on a YBCO film by dip coating process at a diping speed of 20m/min. Coated film was dried in air and heat treated at $400{\sim}700^{\circ}C$ in an oxygen atmosphere. Adhesion strength between YBCO and silver layer was measured by a tape est(ASTM D 3359). Hardness and electrical conductivity of the samples were measured by pencil hardness test (ASTM D 3363) and volume resistance test by LORESTA-GP (MITSHUBISHD, respectively. The sample heat-treated at $500^{\circ}C$ showed poor adhesion 1B, but samples heat treated at higher than $600^{\circ}C$ showed enhanced adhesion of 5B. The silver layer heat-treated at $700^{\circ}C$ showed the high hardness value larger than 9 H, low volume resistance, surface resistance value as well as superior current carrying capacity compared to sputtered silver. SEM observations showed that a dense silver layer was formed with a thickness of about $2{\mu}m$. Dip coated silver layer prepared by using nano silver paste showed superior electrical and mechanical characteristics.

The application of Nano-paste for high efficiency back contact Solar cell (고효율 후면 전극형 태양전지를 위한 나노 Paste의 적용에 대한 연구)

  • Nam, Donghun;Lee, Kyuil;Park, Yonghwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.53.2-53.2
    • /
    • 2010
  • In this study, we focused on our specialized electrode process for Si back-contact crystalline solar cell. It is different from other well-known back-contact cell process for thermal aspect and specialized process. In general, aluminum makes ohmic contact to the Si wafer and acts as a back surface reflector. And, silver is used for low series resistance metal grid lines. Aluminum was sputtered onto back side of wafer. Next, silver is directly patterned on the wafer by screen printing. The sputtered aluminum was removed by wet etching process after rear silver electrode was formed. In this process, the silver paste must have good printability, electrical property and adhesion strength, before and after the aluminum etching process. Silver paste also needs low temperature firing characteristics to reduce the thermal budget. So it was seriously collected by the products of several company of regarding low temperature firing (below $250^{\circ}C$) and aluminum etching endurance. First of all, silver pastes for etching selectivity were selected to evaluate as low temperature firing condition, electrical properties and adhesive strength. Using the nano- and micron-sized silver paste, so called hybrid type, made low temperature firing. So we could minimize the thermal budget in metallization process. Also the adhesion property greatly depended on the composition of paste, especially added resin and inorganic additives. In this paper, we will show that the metallization process of back-contact solar cell was realized as optimized nano-paste characteristics.

  • PDF

Filling and Wiping Properties of Silver Nano Paste in Trench Layer of Metal Mesh Type Transparent Conducting Electrode Films for Touch Screen Panel Application (실버 나노분말을 이용한 메탈메쉬용 페이스트의 충전 및 와이핑 특성)

  • Kim, Gi-Dong;Nam, Hyun-Min;Yang, Sangsun;Park, Lee-Soon;Nam, Su-Yong
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.464-471
    • /
    • 2017
  • A metal mesh TCE film is fabricated using a series of processes such as UV imprinting of a transparent trench pattern (with a width of $2-5{\mu}m$) onto a PET film, filling it with silver paste, wiping of the surface, and heat-curing the silver paste. In this work nanosized (40-50 nm) silver particles are synthesized and mixed with submicron (250-300 nm)-sized silver particles to prepare silver paste for the fabrication of metal mesh-type TCE films. The filling of these silver pastes into the patterned trench layer is examined using a specially designed filling machine and the rheological testing of the silver pastes. The wiping of the trench layer surface to remove any residual silver paste or particles is tested with various mixture solvents, and ethyl cellosolve acetate (ECA):DI water = 90:10 wt% is found to give the best result. The silver paste with 40-50 nm Ag:250-300 nm Ag in a 10:90 wt% mixture gives the highest electrical conductance. The metal mesh TCE film obtained with this silver paste in an optimized process exhibits a light transmittance of 90.4% and haze at 1.2%, which is suitable for TSP application.

Fabrication of Conductive Pastes for Induction Cookware with the Variation of the Contents of Silver Powder and Glass Frit (인덕션 조리용기용 도전성 Paste의 Silver 및 Glass Frit 함량 변화에 따른 미세구조 및 전기적 특성 고찰)

  • Gu, Hyun Ho;Kim, Bong Ho;Yoon, Young Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.11
    • /
    • pp.690-695
    • /
    • 2016
  • Induction cooktop has a great attention due to its safety, quick heating and cleanness compared to gas oven. However, the materials for induction cookware is limited to steel or stainless-steel which has the magnetic property. Recently, it has been tried to apply various porcelain to induction cookware after printing the silver layer on the bottom of cookware plates and co-firing at high temperature. Glass frits are added in the silver paste to improve an adhesion force between porcelain materials containers and transferred silver layer. The hybrid silver pastes for induction cookware requires the proper electrical resistance and the thermal conductivity with base plates. After sintering process at $800^{\circ}C$, a part of melted glass migrated to the porcelain and the rest of the glass frit was exposed to the surface. It was confirmed that most of the glass frit formed an adhesion layer between the porcelain and transferred silver layer that enhances the adhesion force.

Preparation of Lead-free Silver Paste with Nanoparticles for Electrode (나노입자를 첨가한 전극용 무연 silver 페이스트의 제조)

  • Park, Sung Hyun;Park, Keun Ju;Jang, Woo Yang;Lee, Jong Kook
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.4
    • /
    • pp.219-224
    • /
    • 2006
  • Silver paste with low sintered temperature has been developed in order to apply electronic parts, such as bus electrode, address electrode in PDP (Plasma Display Panel) with large screen area. In this study, nano-sized silver particles with 10-30 nm were synthesized from silver nitrate ($AgNO_3$) solution by chemical reduction method and silver paste with low sintered temperature was prepared by mixing silver nanoparticles, conventional silver powder with the particle size 1.6 um and Pb-free frit. Conductive thick film from silver paste was fabricated by screen printing on alumina substrate. After firing at $540^{\circ}C$, the cross section and surface morphology of the thick films were analyzed by FE-SEM. Also, the sheet resistivity of the fired thick films was measured using the four-point technique.

Fabrication and Characterization of Silver Copper(I) Oxide Nanoparticles for a Conductive Paste (은이 코팅된 Copper(I) Oxide 나노 입자 및 도전성 페이스트의 제조 특성)

  • Park, Seung Woo;Son, Jae Hong;Sim, Sang Bo;Choi, Yeon Bin;Bae, Dong Sik
    • Korean Journal of Materials Research
    • /
    • v.29 no.1
    • /
    • pp.37-42
    • /
    • 2019
  • This study investigates Ag coated $Cu_2O$ nanoparticles that are produced with a changing molar ratio of Ag and $Cu_2O$. The results of XRD analysis reveal that each nanoparticle has a diffraction pattern peculiar to Ag and $Cu_2O$ determination, and SEM image analysis confirms that Ag is partially coated on the surface of $Cu_2O$ nanoparticles. The conductive paste with Ag coated $Cu_2O$ nanoparticles approaches the specific resistance of $6.4{\Omega}{\cdot}cm$ for silver paste(SP) as $(Ag)/(Cu_2O)$ the molar ratio increases. The paste(containing 70 % content and average a 100 nm particle size for the silver nanoparticles) for commercial use for mounting with a fine line width of $100{\mu}m$ or less has a surface resistance of 5 to $20{\mu}{\Omega}{\cdot}cm$, while in this research an Ag coated $Cu_2O$ paste has a larger surface resistance, which is disadvantageous. Its performance deteriorates as a material required for application of a fine line width electrode for a touch panel. A touch panel module that utilizes a nano imprinting technique of $10{\mu}m$ or less is expected to be used as an electrode material for electric and electronic parts where large precision(mounting with fine line width) is not required.

Preparation of Highly Stabilized Silver Nanopowders by the Thermal Reduction and Their Properties

  • Kim, Kyoung-Young;Gong, Myoung-Seon;Park, Chan-Kyo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.3987-3992
    • /
    • 2012
  • Silver nanopowders were prepared from silver 2-ethylhexylcarbamate (Ag-EHCB) complexes by simple thermal reduction at $85^{\circ}C$ without any reducing agent in organic solvent. 2-Ethylhexylammonium 2-ethylhexylcarbamate (EHAEHC) was investigated in terms of their abilities to stabilize the silver nanoparticles (Ag-NPs) and its subsequent effects on the preventing aggregation between Ag-NPs. Conditions (concentration of stabilizer and reaction time) used to reduce Ag-EHCB complex were systematically varied to determine their effects on the sizes of Ag-NPs. The formation of the stabilized Ag-NPs were easily monitored by UV-vis spectroscopy and characterized by TGA, TEM, SEM and XRD. When EHAEHC was used as a stabilizer, Ag-NPs of 10-30 nm in diameter were easily obtained in high yield. Silver patterns were obtained from a silver nano-paste by heat treatment at $200^{\circ}C$ in air and were found to have resistivity values of $2.9{\times}10^{-8}\;{\Omega}{\cdot}m$.

Fabrication of Supercapacitors using Silver Nano Paste and Gel Electrolyte (은 나노 페이스트와 젤 전해질을 이용한 슈퍼캐패시터 제작)

  • Yoon, Seong Man;Jang, Hyunjung;Kim, Dae Won;Jang, Yunseok;Jo, Jeongdai;Go, Jeung Sang
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.410-415
    • /
    • 2013
  • The supercapacitors were fabricated using silver (Ag) nano paste and activated carbon paste on the polyimide (PI) film and 5% potassium polyacrylate (PAAK) was used for gel electrolyte. In this paper, the current collector film and the electrode film were fabricated using screen printing. The thickness of printed silver paste was $7.3{\mu}m$ and the sheet resistance has the range of $5-7m{\Omega}/square$. An activated carbon with a surface area of $1,968m^2/g$, an electronic conducting agent (SUPER P, TIMCAL) and poly (4-vinylphenol) were mixed in 2-(2-buthoxyethoxy) ethyl acetate (BCA) with a ratio of 7:1:3 to fabricate the electrode paste. To analyze electrochemical characteristics, cyclic voltammetry was performed to evaluate the stability of the devices under the voltage range of -0.5-0.5 V. The calculated specific capacitances were 44.04 and 8.62 F/g for 10 and 500 mV/s scan rates, respectively.

Design of a Full-Printed NFC Tag Using Silver Nano-Paste and Carbon Ink (은 나노 분말과 카본 잉크를 이용한 완전 인쇄형 NFC 태그 설계)

  • Lee, Sang-hwa;Park, Hyun-ho;Choi, Eun-ju;Yoon, Sun-hong;Hong, Ic-pyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.716-722
    • /
    • 2017
  • In this paper, a fully printed NFC tag operating at 13.56 MHz was designed and fabricated using silver nano-paste and carbon ink. The proposed NFC tag has a printed coil with an inductance of $2.74{\mu}H$ on a PI film for application to an NFC tag IC with an internal capacitance of 50 pF. Screen printing technology used in this paper has advantages such as large area printing for mass production, low cost and eco-friendly process compared to conventional PCB manufacturing process. The proposed structure consists of a circular coil implemented as a single layer using silver nano-paste and carbon ink, a jumper pattern for chip mounting between the outer edge and the center of the coil, and an insulation pattern between the coil and the jumper pattern. In order to verify the performance of the proposed NFC tag, we performed the measurements of the printing line width, thickness, line resistance, adhesion and environmental reliability, and confirmed the suitability of the NFC tag based on the full-printed manufacturing method.