• Title/Summary/Keyword: Silver ink

Search Result 89, Processing Time 0.022 seconds

Micro Patterning of Conductive Line by Micro Droplet Ejection of Nano Metal Ink (나노 금속잉크의 미세 액적 토출을 이용한 마이크로 패터닝)

  • Seo S.H.;Park S.J.;Jung H.C.;Joung J.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.689-693
    • /
    • 2005
  • Inkjet printing is a non-contact and direct writing associated with a computer. In the industrial field, there have been many efforts to utilize the inkjet printing as a new way of manufacturing, especially for electronic devices. For the application of inkjet printing to electronic field, one of the key factors is exact realization of designed images into printed patterns. In this work, micro patterning for conducting line has been studied using the piezoelectric print head and silver nano ink. Dimensions of printed images have been predicted in terms of print resolution and diameter of a single dot. The predicted and the measured values showed consistent results. Using the results, the design capability for industrial inkjet printing could be achieved.

  • PDF

Development of Capacitive-type Pressure Mapping Sensor using Printing Technology

  • Lee, Young-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.24-27
    • /
    • 2017
  • In this study, I developed a simple and low cost process-printing a silver, carbon, dielectric, adhesive layer on PET films using screen printing technology and bonding the two films face-to-face-to fabricate a low price capacitive pressure-mapping sensor. Both electrodes forming the pressure measuring capacitor are arranged between the two PET films similar to a sandwich. Therefore, the sensor has the advantage of minimizing the influence of external noise. In this study, a $10{\times}10$ capacitance-type pressure-mapping sensor was fabricated and its characteristics were analyzed.

A Study on the Control System for Piezoelectric Inkjet Head (압전 잉크젯 프린터 헤드 제어에 관한 연구)

  • Lee, Dal-Ho;Han, Hyung-Seok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.8 no.1
    • /
    • pp.30-35
    • /
    • 2009
  • In this paper, the type of inkjet heads and the control of head of inkjet printer are surveyed. The electronic parts of inkjet printer are composed of main- board and sub-board. The inkjet head is controlled by using these boards. The results from silver ink jetting experiment are given. The results show that the implemented inkjet system can give a satisfactory performance.

  • PDF

Characterization of Inkjet-Printed Silver Patterns for Application to Printed Circuit Board (PCB)

  • Shin, Kwon-Yong;Lee, Minsu;Kang, Heuiseok;Kang, Kyungtae;Hwang, Jun Young;Kim, Jung-Mu;Lee, Sang-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.603-609
    • /
    • 2013
  • In this paper, we describe the analysis of inkjet-printed silver (Ag) patterns on epoxy-coated substrates according to several reliability evaluation test method guidelines for conventional printed circuit boards (PCB). To prepare patterns for the reliability analysis, various regular test patterns were created by Ag inkjet printing on flame retardant 4 (FR4) and polyimide (PI) substrates coated with epoxy for each test method. We coated the substrates with an epoxy primer layer to control the surface energy during printing of the patterns. The contact angle of the ink to the coated epoxy primer was $69^{\circ}$, and its surface energy was 18.6 $mJ/m^2$. Also, the substrate temperature was set at $70^{\circ}C$. We were able to obtain continuous line patterns by inkjet printing with a droplet spacing of $60{\mu}m$. The reliability evaluation tests included the dielectric withstanding voltage, adhesive strength, thermal shock, pressure cooker, bending, uniformity of line-width and spacing, and high-frequency transmission loss tests.

A COMPARATIVE ANALYSIS BETWEEN INJECTION-MOLDED THERMOPLASTICIZED GUTTA-PERCHA AND SILVER AMALGAM AS RETROSEAL (Injection technique에 의한 retroseal의 변연폐쇄능에 관한 실험적 연구)

  • Sin, Young-Keun;Choi, Gi-Woon;Lee, In-Sook
    • Restorative Dentistry and Endodontics
    • /
    • v.14 no.2
    • /
    • pp.31-37
    • /
    • 1989
  • The purpose of these study was to compare the sealing ability of a injection-molded thermoplasticized gutta-percha and silver amalgam as retroseal material in vitro. Sixty two upper and lower extracted human teeth with single root were randomly selected and instrumented in a conventional method with H-file. After instrumentation the root canal was obturated with gutta-percha by lateral condensation technique with AH26 and an apicoectomy was performed by beveling the root tip 45 angle. In the experimental group 1 and 2, a class I preparation was made and filled with silver amalgam or gutta-percha and in the experimental group 3 an apicoectomy only was performed. All specimens were immersed in black Indian ink, decalcified and cleared. The depth of dye penetration into the canals were evaluated by califer. The results were as follows ; 1. The experimental group 1 displayed the smallest mean dye penetration as 0.45mm. 2. The experimental group 3 displayed the greatest mean dye penetration as 0.65mm. 3. There was the difference in dye penetration between each group, but the difference was not statistically significant(P>0.05).

  • PDF

Implementation of High Performance Micro Electrode Pattern Using High Viscosity Conductive Ink Patterning Technique (고점도 전도성 잉크 패터닝 기술을 이용한 고성능 미세전극 패턴 구현)

  • Ko, Jeong Beom;Kim, Hyung Chan;Dang, Hyun Woo;Yang, Young Jin;Choi, Kyung Hyun;Doh, Yang Hoi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.83-90
    • /
    • 2014
  • EHD (electro-hydro-dynamics) patterning was performed under atmospheric pressure at room temperature in a single step. The drop diameter smaller than nozzle diameter and applied high viscosity conductive ink in EHD patterning method provide a clear advantage over the piezo and thermal inkjet printing techniques. The micro electrode pattern was printed by continuous EHD patterning method using 3-type control parameters (input voltage, patterning speed, nozzle pressure). High viscosity (1000cps) conductive ink with 75wt% of silver nanoparticles was used. EHD cone type nozzle having an internal diameter of $50{\mu}m$ was used for experimentation. EHD jetting mode by input voltage and applied 1st order linear regression in stable jet mode was analyzed. The stable jet was achieved at the amplitude of 1.4~1.8 kV. $10{\mu}m$ micro electrode pattern was created at optimized parameters (input voltage 1.6kV, patterning speed 25mm/sec and nozzle pressure -2.3kPa).

Effect of PVP(polyvinylpyrrolidone) on the Ag Nano Ink Property for Reverse Offset Printing (PVP(polyvinylpyrrolidone)가 리버스 오프셋용 은 나노 잉크 물성에 미치는 영향)

  • Han, Hyun-Suk;Kwak, Sun-Woo;Kim, Bong-Min;Lee, Taik-Min;Kim, Sang-Ho;Kim, In-Young
    • Korean Journal of Materials Research
    • /
    • v.22 no.9
    • /
    • pp.476-481
    • /
    • 2012
  • Among the various roll-to-roll printing technologies such as gravure, gravure-offset, and reverse offset printing, reverse offset printing has the advantage of fine patterning, with less than 5 ${\mu}m$ line width. However, it involves complex processes, consisting of 1) the coating process, 2) the off process, 3) the patterning process, and 4) the set process of the ink. Each process demands various ink properties, including viscosity, surface tension, stickiness, and adhesion with substrate or clich$\acute{e}$; these properties are critical factors for the printing quality of fine patterning. In this study, Ag nano ink was developed for reverse offset printing and the effect of polyvinylpyrrolidone(PVP), used as a capping agent of Ag nano particles, on the printing quality was investigated. Ag nano particles with a diameter of ~60 nm were synthesized using the conventional polyol synthesis process. Ethanol and ethylene glycol monopropyl ether(EGPE) were used together as the main solvent in order to control the drying and absorption of the solvents during the printing process. The rheological behavior, especially ink adhesion and stickiness, was controlled with washing processes that have an effect on the offset process and that played a critical role in the fine patterning. The electrical and thermal behaviors were analyzed according to the content of PVP in the Ag ink. Finally, an Ag mesh pattern with a line width of 10 ${\mu}m$ was printed using reverse offset printing; this printing showed an electrical resistivity of 36 ${\mu}{\Omega}{\cdot}cm$ after sintering at $200^{\circ}C$.

EVALUATION OF APICAL PLUG MATERIALS USED FOR THE CONTROL OF EXTRUSION OF HIGH-TEMPERATURE THERMOPLASTICIZED GUTTA-PERCHA (수종의 apical plug 재료의 근단 폐쇄성에 관한 실험적 연구)

  • Hur, Eun-Jung;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.1
    • /
    • pp.205-216
    • /
    • 1994
  • The purpose of this study is to evaluate of apical plug materials for the contral of extrusion and sealing ability of high-temperature thermoplasticized gutta-percha in plastic root canal blocks. Seventy seven plastic blocks with canal preformed were instrumented with # 50K file 1 mm beyond apical foramen. Blocks were randomly divided into 5 groups of 15 blocks each. Group 1 was filled by high-temperature thermoplasticized gutta-percha only. The another 4 groups were placed with apical plug materials each other and then remaining space was back filled with high temperature thermoplasticized gutta-percha Apical plug materials were used as follows; Group 2: Thermoplasticized gutta-percha (Thermoplasticized gutta-percha group) Group 3 :. Calcium hydroxide powder (Calcium hydroxide group) Group 4 : Silver point (Silver point group) Group 5 : Gutta-percha cone softened by chloroform (Gutta-percha cone group) All the blocks were stored in 100 % relative humidor at room temperature for 14 days. Filling material extruded was removed carefully and then weighed in analytic balance. Each block was placed in centrifuge tube filled with India ink, and then centrifuged for 20 minutes at 3,000 rpm. Apical leakage was measured from the apical foramen to the most coronal level of dye leakage in millimeter by two examiners under a stereoscope. The data were analysed statistically by Student's t-test The obtained results were as follows; 1. The amounts of material extruded through the foramen decreased in all of groups used apical plug materials (P<0.01). 2. Silver point group and gutta-percha cone group were similar linear leakage to high-temperature thermoplasticised gutta-percha technique only (P>0..5). 3. Calcium hydroxide group and thermoplasticized gutta-percha group showed more liner leakage than high-temperature thermoplasticized gutta-percha only (P<0.01, P<0.05). 4. High-temperature thermoplasticized gutta-percha technique with silver point and gutta-percha cone as apical plugs showed less linear leakage and less extrusion of filling material.

  • PDF

High Speed and Continuous Electrospinning Printing Using Polymer Ink (고분자 폴리머 잉크를 이용한 고속 연속 전기 방사 프린팅)

  • Zhang, Da-Hai;Kwon, Kye-Si
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.4
    • /
    • pp.379-384
    • /
    • 2015
  • Electrospinning has recently been used for micropatterning. The electrospinning method as a patterning tool has the advantage of a rapid patterning speed because it is based on a continuous printing mode rather than a drop-on-demand mode. To obtain stable continuous printing, a high molecular weight polymer must be mixed with functional materials for patterning. In this paper, polyethylene oxide (PEO) was used. The effect of polymer on viscosity and formation of a Taylor cone jet from the electrospinning nozzle was investigated. Finally, the electrospinning patterning results of a silver paste ink on a glass substrate were investigated.

Implementation of Biosensor Pattern Using Micro Patterning Technique (미세전극 패터닝 기술을 이용한 바이오센서 패턴 구현)

  • Ko, Jeong Beom;Kim, Hyung Chan;Yang, Young Jin;Kim, Hyun Bum;Yang, Seong Wook;Oh, Seung Ho;Doh, Yang Hoi;Choi, Kyung Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.122-128
    • /
    • 2016
  • The Biosensor biosensor pattern was developed by via an EHD (electro-hydro-dynamics (EHD) patterning process that was performed under atmospheric pressure at room temperature in a single step. The drop diameter was smaller than nozzle diameter and applied high viscosity conductive ink was applied in the EHD patterning method to provide a clear advantage over the piezo and thermal inkjet printing techniques. The Biosensor's biosensor's micro electrode pattern was printed by via a continuous EHD patterning method using 3three- type types of control parameters parameter (input voltage, patterning speed, nozzle pressure). High viscosity (1000 cps) conductive ink with 75 wt% of silver nanoparticles was used for experimentation. The incremental result of impedance of biosensor impedance was measured between the antibody ($10ug{\mu}g/ml$) to spore (0.1 ng/ml, 10 ng/ml, and $1ug{\mu}g./ml$) reaction at frequency 493 MHz frequency.