• Title/Summary/Keyword: Silver diamine fluoride

Search Result 9, Processing Time 0.023 seconds

The effect of Silver Diamine Fluoride in preventing dental caries (Silver Diamine Fluoride의 치아우식 예방 효과)

  • Song, Ji-Soo
    • The Journal of the Korean dental association
    • /
    • v.56 no.8
    • /
    • pp.424-431
    • /
    • 2018
  • Silver diamine fluoride (SDF) is an alkaline topical solution and it derives from the conjunction of silver nitrate and fluoride. It reduces the growth of cariogenic bacteria, inhibits degradation of dentinal collagen, impedes demineralization and enhances remineralization. It is inexpensive due to the low cost of materials and its application to dental surface is very simple and requires relatively short chair time. Previous studies have shown that the dental caries prevention effect of SDF is superior or similar to topical fluoride application. The main disadvantage of SDF is its esthetic result, and it permanently blacken carious enamel and dentin. The use of SDF has not yet been approved in Korea, but it may be helpful to prevent and treat dental caries in patients with special health care needs and uncooperative young patients.

  • PDF

Antimicrobial Persistence of Silver Diamine Fluoride and Silver Fluoride against Streptococcus mutans

  • Hyeon-Jin Kim;So-Youn An
    • Journal of Korean Dental Science
    • /
    • v.16 no.2
    • /
    • pp.164-171
    • /
    • 2023
  • Purpose: To evaluate the antimicrobial persistence of silver diamine fluoride (SDF) and silver fluoride (AgF) on Streptococcus mutans. Materials and Methods: An in vitro experiment was conducted to observe changes in the diameter of the inhibition zone of various materials, including AgF (Riva Star AquaTM step 1; SDI), potassium iodine (Riva star aquaTM step 2; SDI), Fluor protector® (FP, Ivoclar Vivadent), SDF (Riva starTM step 1; SDI), Ampicillin (Sigma-Aldrich), Amphotericin B (Nexstar) and negative control on S. mutans. Result: SDF, AgF and FP exhibited significant antimicrobial persistence over the 4 weeks period (P<0.05). At day 28, the diameter of inhibition zone was larger in SDF than in AgF. Conclusion: SDF and AgF have significant antibacterial durability against bacteria commonly associated with dental caries, with the antimicrobial effect lasting for at least 4 weeks. Further clinical studies are needed to validate these findings in vivo.

Effect of Silver Diamine Fluoride and Sodium Fluoride Varnish on Remineralization in Artificially Induced Enamel Caries: An in vitro Study (Silver diamine fluoride와 sodium fluoride (NaF) 바니쉬의 법랑질 인공우식병소 재광화 효과)

  • Kim, Soyoung;Lee, Sangho;Lee, Nanyoung;Jih, Myeongkwan
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.47 no.3
    • /
    • pp.266-276
    • /
    • 2020
  • The purpose of this study was to compare the remineralization effect of 38% silver diamine fluoride (SDF) and 5% sodium fluoride (NaF) varnish on artificially induced enamel caries. The present study standardized the physiochemical characteristics of the tooth structure using bovine teeth, realized the wash-off action of agents using a saliva, reproduced an environment similar to mouth through pH-cycling, and comparatively assessed the remineralization effect of 38% SDF and 5% NaF varnish in a non-destructive method using micro-CT. And the remineralized enamel surface structure was analyzed by scanning electron microscopy (SEM) and energy dispersive X-Ray spectroscopy (EDS). In both SDF and NaF varnish, mineral density (△Hounsfield unit value) and the volume of enamel restored to normal mineral density through remineralization gradually increased with time. And the SDF showed a much higher level of increase in mineral density at all depths and remineralized volume than NaF varnish. According to SEM analysis, the surface roughness decreased in the order of artificial saliva, NaF varnish and SDF. In addition, EDS analysis showed that silver ion was precipitated on the enamel surface in SDF group. In conclusion, SDF had a greater remineralization effect than NaF varnish on demineralized enamel.

The Effect of Silver Diamine Fluoride on Salivary Biofilm (Silver diamine fluoride가 타액 생물막에 미치는 영향)

  • Seo, Meekyung;Song, Ji-Soo;Shin, Teo Jeon;Hyun, Hong-Keun;Kim, Jung-Wook;Jang, Ki-Taeg;Lee, Sang-Hoon;Kim, Young-Jae
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.47 no.4
    • /
    • pp.406-415
    • /
    • 2020
  • Silver diamine fluoride (SDF) is an effective and efficient agent for arresting dental caries. It can be useful in treating children with behavioral or medical limitations. The purpose of this study was to evaluate the antimicrobial effect of SDF by using salivary biofilm. Pellicle-like saliva coated structure was prepared by using unstimulated saliva. For developing cariogenic biofilm, Streptococcus mutans was added to the mixture of pooled saliva and inoculated into a saliva coated glass or chamber. SDF was applied to cariogenic biofilm to evaluate the antimicrobial effect of SDF. As time passed, total bacteria and S. mutans were reduced after application of SDF (p < 0.000). Confocal laser scanning microscope also showed the increment of the ratio of dead cell. As a result of experiment using enamel and dentin of primary teeth, it was confirmed that the growth of cariogenic biofilm was inhibited when the SDF was treated (p = 0.029 each). This study showed excellent anti-microbial effect of SDF. And anti-caries effect in clinical practice can be expected.

Silver Diamine Fluoride Compound for Dental Caries and Its Characterisation Using Microscopic Computed Tomography and Nanoindentation

  • So-Youn An;Myung-Jin Lee;Min-Kyung Kang;Youn-Soo Shim
    • Journal of dental hygiene science
    • /
    • v.23 no.1
    • /
    • pp.60-67
    • /
    • 2023
  • Background: In our study, a silver diamine fluoride (SDF) compound for the treatment of dental caries was synthesized to characterize its remineralization activity upon direct application to deciduous teeth. This study aimed to use microscopic computed tomography (microCT) and nanoindentation to evaluate whether SDF composite application could effectively arrest dental caries in five exfoliated primary molars. Methods: Carious teeth were extracted and visually examined using quantitative photofluorescence devices (Qraycam and QraypenTM). After performing microCT, the SDF composite was applied to the teeth according to the manufacturer's instructions. The researchers exchanged and precipitated the irritant saliva once daily for 1 week. The teeth were sectioned longitudinally through the centers of the mesial and distal surfaces, embedded, polished, and measured using nanoindentation. Thereafter, microCT was repeated. Statistical analyses were performed using GraphPad Prism software. Results: Following SDF composite application, a remineralized layer was observed on microCT images, and the hardness increased when measured using nanoindentation. We found that demineralized enamel presented with an increased number of irregular crystals in the deep carious lesion group compared with those in the shallow carious lesion group, resulting in a rougher surface. Conclusion: The SDF composite may be used for remineralization of early caries and cessation of advanced caries in primary molars.

Evaluation of Acid Resistance of Demineralized Dentin after Silver Diamine Fluoride and Potassium Iodide Treatment (Silver Diamine Fluoride와 요오드화 칼륨 도포 후 변화하는 탈회 상아질의 내산성 평가)

  • Haesong, Kim;Juhyun, Lee;Siyoung, Lee;Haeni, Kim;Howon, Park
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.4
    • /
    • pp.392-401
    • /
    • 2022
  • This study investigated the effects of silver diamine fluoride (SDF) and potassium iodide (KI) treatments on the acid resistance of dentin exposed to secondary caries. Sixteen bovine dentin specimens with artificially induced caries were assigned to the following four groups: untreated negative control, untreated positive control, SDF-treated (SDF), and SDF and KI-treated (SDFKI). Multispecies cariogenic biofilms containing Streptococcus mutans, Lactobacillus casei, and Candida albicans were cultured on the specimens for 28 days, except for the negative control group. Specimens from the negative control group were stored in phosphate-buffered saline for that period. After a cariogenic biofilm challenge, the degree of demineralization was evaluated using micro-computed tomography (micro-CT). As a result of data analysis using micro-CT, the demineralization depths of the negative control, positive control, SDF, and SDFKI groups were 149.0 ± 7 ㎛, 392.0 ± 11 ㎛, 206.0 ± 20 ㎛, and 230.0 ± 31 ㎛, respectively. The degree of demineralization was significantly reduced in the SDF and SDFKI groups compared with that in the untreated positive control group. There were no significant differences between the SDF and SDFKI groups. This study confirmed that SDF and SDFKI treatments increase the acid resistance of dentin to secondary caries. KI did not significantly affect the caries-arresting effect of the SDF.

Surface Roughness of Dentin and Formation of Early Cariogenic Biofilm after Silver Diamine Fluoride and Potassium Iodide Application (Silver Diamine Fluoride와 요오드화 칼륨 도포 후 상아질 표면 거칠기와 초기 우식원성 세균막 형성)

  • Haeni, Kim;Howon, Park;Juhyun, Lee;Siyoung, Lee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.2
    • /
    • pp.140-148
    • /
    • 2022
  • This study aimed to evaluate the effect of silver diamine fluoride (SDF) and potassium iodide (KI) on the formation of cariogenic biofilm and surface roughness in vitro. A total of 48 bovine dentin specimens with artificially induced caries were prepared and divided into 3 groups of 16: untreated control, SDF-treated, and SDF-treated followed by KI (SDFKI). Ten specimens from each group were used to observe microbial adhesion. Multispecies cariogenic biofilms including Streptococcus mutans, Lactobacillus casei, and Candida albicans were cultured on the specimens. Microbes were cultured for 24 hours, and the colony-forming unit was calculated. The remaining specimens were observed by atomic force microscope and scanning electron microscope (SEM). The number of bacteria was significantly lower in the SDF and SDFKI groups. KI did not inhibit the antibacterial activity of SDF significantly. SEM images showed particles generated after SDF and SDFKI application were deposited on the dentin, but there was no significant difference in surface roughness between the 3 groups. This study confirmed that SDF and SDFKI application did not have a significant effect on the surface roughness of dentin, but effectively inhibited the formation of the early cariogenic bacterial film after 24 hours compared to the control.

Can silver diamine fluoride or silver nanoparticle-based anticaries agents to affect enamel bond strength?

  • Jaqueline Costa Favaro ;Yana Cosendey Toledo de Mello Peixoto ;Omar Geha ;Flaviana Alves Dias ;Ricardo Danil Guiraldo ;Murilo Baena Lopes ;Sandrine Bittencourt Berger
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.1
    • /
    • pp.7.1-7.8
    • /
    • 2021
  • Objectives: The aim of the current study is to investigate the effect of different anticaries agents, such as experimental agents based on silver nanoparticles (SNPs) and silver diamine fluoride (SDF), on the micro-shear bond strength (μ-SBS) of composite resin applied to intact enamel (IE) or demineralized enamel (DE). Materials and Methods: Sixty dental enamel fragments were collected from human third molars and categorized into 6 groups (n = 10): positive control (IE), negative control (DE), IE + SDF, DE + SDF, IE + SNP and DE + SNP. Samples from DE, DE + SDF and DE + SNP groups were subjected to pH cycling; superficial microhardness test was performed to confirm demineralization. Resin composite build-ups were applied to the samples (0.75-mm diameter and 1-mm height) after the treatments (except for IE and DE groups); μ-SBS was also evaluated. Samples were analyzed under a stereomicroscope at 40× magnification to identify failure patterns. Data were subjected to one-way analysis of variance, followed by Tukey's and Dunnett's tests (p < 0.05). Results: There was no significant difference among the IE, IE + SNP, DE + SDF, and DE + SNP groups. The IE + SDF and DE groups recorded the highest and the lowest μ-SBS values, respectively. Adhesive-type failures were the most frequent for all treatments. Conclusions: Anticaries agents did not have a negative effect on the μ-SBS of composite resin when it was used on IE or DE.

Effect of Sodium Fluoride Varnish and Potassium Iodide on Remineralization Efficacy of Silver Diamine Fluoride (불화나트륨 바니쉬와 요오드화 칼륨이 Silver Diamine Fluoride의 재광화 효과에 미치는 영향)

  • Lee, Kunho;Ahn, Junyong;Kim, Jong Soo;Han, Miran;Lee, Joonhaeng;Shin Jisun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.48 no.4
    • /
    • pp.467-475
    • /
    • 2021
  • The purpose of this study was to compare the effect of sodium fluoride(NaF) varnish and potassium iodide(KI) on remineralization efficacy of silver diamine fluoride(SDF) by measuring microhardness and evaluating surface morphology by scanning electron microscope(SEM). Artificial caries lesions were induced on extracted primary molars and vickers microhardness was measured. Specimens were randomly separated into 4 groups for treatment. The specimens in group I were treated with SDF, group II with NaF varnish after SDF, group III with KI after SDF and group IV with distilled water. After 8 days of pH cycling, vickers microhardness was measured and difference before and after treatment was calculated. For SEM, 2 samples were evaluated respectively after enamel polishing, lesion formation and after pH cycling. Group III showed highest increase in microhardness. Group I showed higher increase in microhardness than Group II but without statistical difference. Group IV showed lowest increase in microhardness value among 4 groups. On SEM image, group I, II and III showed smoother and less irregular surface compared to group IV. Amorphous crystal pellicles were observed in group III. In conclusion, SDF, SDF and NaF, SDF and KI groups showed smoother surface and increase in microhardness suggesting the possibility that remineralization effect might take place in oral conditions. In addition, in limited conditions of this study, applying NaF varnish after SDF did not increase the remineralization efficacy of SDF while KI significantly increased the remineralization efficacy of SDF. However, additional study considering various conditions that might affect demineralization and remineralization in clinical situations need to be conducted.