• Title/Summary/Keyword: Silver complex

Search Result 159, Processing Time 0.019 seconds

Preparation of Silver Nanoparticles in Ultrasonic Vibration-Induced Nanodroplets of Isopropyl Alcohol in Combination with Ionic Liquids

  • Shin, Ueon-Sang;Hong, Hyun-Ki;Kim, Hae-Won;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1583-1586
    • /
    • 2011
  • Silver nanoparticles (<10 nm) were prepared in ultrasonic vibration-induced nanodroplets of isopropyl alcohol (IPA) in combination with hydrophobic room temperature ionic liquids (RTILs). The Ag-precursor used were silver (I) complex, Ag$_2$(ehac)$_2$(eha)$_2$ (ehac = 2-ethylhexylammonium carbamate; eha = 2-ethylhexylamine), in IPA, while 1-butyl-3-methylimidazolium-based ionic liquids bearing $SbF_6^-$, $PF_6^-$ and $NTf_2^-$ as counter anions were used as RTILs. During sonication for 10-90 min at room temperature, uniform silver nanoparticles with mean sizes of 2 to 8 nm were rapidly synthesized. Transmission electron micrographs also confirmed that silver nanoparticles have a spherical shape and diverse sizes depending on the reaction time (10-90 min).

Sorption of Thiocyanate Silver Complexes and Determination of Silver by Diffuse Reflectance Spectroscopy

  • Kononova, O.N.;Goryaeva, N.G.;Vorontsova, T.V.;Bulavskaya, T.A.;Kachin, S.V.;Kholmogorov, A.G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1832-1838
    • /
    • 2006
  • The present paper is focused on sorption concentration of silver (I) on some complex-forming ion exchangers in the initial thiocyanate form and subsequent determination of Ag(I) in the phase of anion exchanger AN-25 by diffuse reflectance spectroscopy. The sorption and kinetic characteristics of the sorbents were investigated. The apparent stability constants of thiocyanate silver complexes in the ion exchanger phase were calculated. The sorption-spectroscopic method is proposed for Ag(I) determination in aqueous solutions. The calibration curve is linear in the concentration range of 10-200 mg/L (sample volume is 10.0 mL) and the detection limit is 2 $\mu$g/mL. The presence of $Na^+,\;K^+,\;Mg^{2+}$ (macrocomponents) as well as of Ni (II), Co (II), Cu (II) do not hinder the determination of silver (I).

Macrocyclic Isomers with S2O-Donor Set as Silver(I) Ionophores

  • Park, Sung-Bae;Yoon, Il;Seo, Joo-beom;Kim, Hyun-Jee;Kim, Jae-Sang;Lee, Shim-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.713-717
    • /
    • 2006
  • $S_2O$-donor macrocyclic isomers incorporating a xylyl group in o- ($L^1$), m- ($L^2$) and p-positions ($L^3$) extract no metal ions except silver(I) from aqueous to chloroform phase. And the magnitudes of %Ex for silver(I) are in the order of $L^1$ > $L^2$ > $L^3$. Taking this result into account, $L^1$-$L^3$ were utilized as membrane active components to prepare potentiometric silver(I)-selective electrodes. The proposed macrocycles-based electrodes E1 ($L^1$), E2 ($L^2$) and E3 ($L^3$) exhibited comparable results which show considerable selectivity toward silver(I) over alkali, alkali earth and other transition metal ions. Comparative NMR study on $L^1$-$L^3$ and their complexes with silver(I) in solution was also accomplished. In addition, a unique sandwich-type complex $[Ag(L^1)_2]CIO_4$ was prepared from the assembly reaction of $L^1$ with $AgClO_4$ and structurally characterized by an X-ray diffraction analysis.

Unusual Facilitated Olefin Transport through Polymethacrylate/Silver Salt Complexes

  • Kim, Jong-Hak;Joo, Seung-Hwan;Kim, Chang-Kon;Kang, Yong-Soo;Jongok Won
    • Macromolecular Research
    • /
    • v.11 no.5
    • /
    • pp.375-381
    • /
    • 2003
  • Silver salt complex membranes with glassy poly(methyl methacrylate) (PMMA) unexpectedly showed higher propylene permeance than those with rubbery poly(butyl methacrylate) (PBMA) where as neat PMMA is much less permeable to propylene than that of neat PBMA. Such unusual facilitated olefin transport has been systematically investigated by changing the side chain length of polymethacrylates (PMAs) from methyl, ethyl to butyl. The ab initio calculation showed almost the same electron densities of the carbonyl oxygens in the three PMAs, expecting very similar intensity of the interaction between carbonyl oxygen and silver ion. However, the interaction intensity decreases with the length of the alkyl side chain: PMMA > PEMA > PBMA according to wide angle X-ray scattering and FT-Raman spectroscopy. The difference in the interaction intensity may arise from the difference in the hydrophilicity of the three PMAs, as confirmed by the contact angle of water, which determines the concentrations of the ionic constituents of silver salts: free ion, contact ion pair and higher order ionic aggregate. However, propylene solubilities and facilitated propylene transport vary with the side chain length significantly even at the same concentration of the free ion, the most active olefin carrier, suggesting possible difference in the prohibition of the molecular access of propylene to silver ion by the side chains: the steric hindrance. Therefore, it may be concluded that both the hydrophilicity and the steric hindrance associated with the side chain length in the three PMAs are of pivotal importance in determining facilitated olefin transport through polymer/silver salt complex membranes.

Design of the u-Service System for Silver Towns (실버타운을 위한 u-서비스 시스템의 설계)

  • Choi, Yeon-Suk;Park, Byoung-Tae;Choi, Yong-Ju
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2010.04a
    • /
    • pp.127-135
    • /
    • 2010
  • In this paper, the u-Service system that is based on location-aware technology is designed for a silver town. It provides services such as emergency call, intelligent elevator operation, and hands-free door access based on the location of the residents with personal device as called smart tag. It can also be applied to other service areas such as the location-aware u-Service for Hospital, high-rising complex building, APT, etc.

  • PDF

Etchant for Dissolving Thin Layer of Ag-Cu-Au Alloy

  • Utaka, Kojun;Komatsu, Toshio;Nagano, Hiroo
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.304-307
    • /
    • 2007
  • As to the reflection electrode of LCD (liquid crystal displays), silver-copper-gold alloy (hereafter, it is called as ACA (Ag98%, Cu1%, Au1%)) is an effective material of which weathering resistance can be improved more compared with pure silver. However, there is a problem that gold remains on the substrate as residues when ACA is etched in cerium ammonium nitrate solution or phosphoric acid. Gold can not be etched in these etchants as readily as the other two alloying elements. Gold residue has actually been removed physically by brushing etc. This procedure causes damage to the display elements. Another etchant of iodine/potassium iodide generally known as one of the gold etchants can not give precise etch pattern because of remarkable difference in etching rates among silver, copper and gold. The purpose of this research is to obtain a practical etchant for ACA alloy. The results are as follows. The cyanogen complex salt of gold generates when cyanide is used as the etchant, in which gold dissolves considerably. Oxygen reduction is important as the cathodic reaction in the dissolution of gold. A new etchant of sodium cyanide / potassium ferricyanide whose cathodic reduction is stronger than oxygen, can give precise etch patterns in ACA alloy swiftly at room temperature.

Silver (I)- Schiff-base complex intercalated layered double hydroxide with antimicrobial activity

  • Barnabas, Mary Jenisha;Parambadath, Surendran;Nagappan, Saravanan;Chung, Ildoo;Ha, Chang-Sik
    • Advances in nano research
    • /
    • v.10 no.4
    • /
    • pp.373-383
    • /
    • 2021
  • In this work, silver nitrate complexes of sulfanilamide-5-methyl-2-thiophene carboxaldehyde (SMTCA) ligand intercalated Zn/Al-layered double hydroxide [Ag-SMTCA-LDH] were synthesized for the potential application as an antimicrobial system. The SMTCA ligand was synthesized by reacting sulfanilamide and 5-methyl-2-thiophene carboxaldehyde in methanol and further complexation with silver nitrate metal ions [Ag-SMTCA]. The structural analyses of synthesized compounds confirmed an intercalation of Ag-SMTCA into Zn/Al-NO3-LDH by flake/restacking method. SMTCA, Ag-SMTCA and Ag-SMTCA-LDH were characterized by 1H nuclear magnetic resonance (1H NMR) spectroscopy, Fourier-transform infrared (FTIR), ultraviolet-visible (UV-Vis) spectrophotometer, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). It was found that Ag-SMTCA-LDH exhibited good antimicrobial activity against both gram-positive (Bacillus subtilis, [B. subtilis], Staphylococcus aures, [S. aureus]) and gram-negative (Escherichia coli, [E. coli], Pseudomonas aeruginosa [P. aeroginosa]) bacteria as well as excellent antioxidant activity.

Inkjet Printing of Customized Silver Ink for Cellulose Electro Active Paper (셀룰로오스 EAPap 용 은잉크 제조 및 잉크젯 프린팅)

  • Mun, Seongcheol;Khondoker, Mohammad Abu Hasan;Kafy, Abdullahil;Mohiuddin, M.d.;Kim, Jaehwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.8
    • /
    • pp.737-742
    • /
    • 2014
  • This paper reports a customized silver ink and its inkjet printing process on a cellulose electro-active paper (EAPap). To synthesize a silver ink, silver nanoparticle is synthesized from silver nitrate, polyvinylpyrrolidone and ethylene glycol, followed by adding a viscosifier, hydroxyethyl-cellulose solution, and a surfactant, diethylene glycol. The silver ink is used in an inkjet printer (Fujifilm Dimatix DMP-2800 series) to print silver electrodes on cellulose EAPap. After printing, the electrodes are heat treated at $200^{\circ}C$. The sintered electrodes show that the thickness of the electrodes linearly increases as the number of printing layers increases. The electrical resistivity of the printed electrodes is $23.5{\mu}{\Omega}-cm$. This customized ink can be used in inkjet printer to print complex electrode patterns on cellulose EAPap to fabricate flexible smart actuators, flexible electronics and sensors.