• Title/Summary/Keyword: Silver Ion

Search Result 263, Processing Time 0.026 seconds

The Discussion of Glass Waveguide formed by ton-exchange (이온교환 방법에 의한 유리도파로 특성 고찰)

  • 박정일;김봉재;박태성;정흥배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.130-132
    • /
    • 1994
  • We fabricated Ag ion exchange glass waveguide. Generally, ion-exchange glass waveguide. are suitable for passive integrated optical components such as directional and star couplers. Its advantages include low loss, ease of fabrication, and low material cost. So, we faricated Ag ion-exchange glass waveguides in AgNO$_3$ melt solution from 2 mole %. And we used Sodalime glass as a substrate in the fabrication process. As the results, we observed multivalent ion-exchange in a typical sodalime glass. Diffusion coefficient and depth are predicted by actual experimental data of Stewart. The exchange rate in silver-ion-exchanged waveguides are compared to the exchange time of waveguide fabrication.

  • PDF

Optimization of Wave Forms for Pulsed Amperometric Detection of Cyanide and Sulfide with Silver-Working Electrode

  • Park, Seong U;Hong, Seong Uk;Yu, Jae Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.143-146
    • /
    • 1996
  • A continuous potential pulse is applied to a silver-working electrode on a pulsed amperometric detector (PAD) for detection of free cyanide and sulfide. The moving phase is 0.1 M sodium hydroxide, 0.5 M sodium acetate and 5% (v/v) ethylenediamine mixture, and the flow rate is 0.7 mL/min. Optimized pulse conditions include a -200 mV (vs. Ag/AgCl reference electrode) detection potential(Ed) for 60 msec and 50 mV cleaning potential (Ec) for 120 msec. The silver working electrode surface is not poisoned by cyanide or sulfide, and the PAD maintains long-term stability without loss of sensitivity and reproducibility at these pulse conditions. The detection limit of cyanide and sulfide separated by ion chromatography using an anion exchange column is 0.1 ppm and 0.05 ppm, respectively.

Analysis of ion-exchanged waveguides by using Prism-Coupling method (Prism-Coupling 방법에 의한 이온교환 도파로 해석)

  • 박정일;박태성;이현용;정홍배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.37-39
    • /
    • 1994
  • We have investigated the characteristics of planar optical waveguides formed by silver ion-exchange. Experimental values of the effective indices of guided modes were obtained by measuring the synchronous angles of strongest coupling. Definition of an effective diffusion constant leads to the mode-dispersion curves applicable over a wide range of fabrication conditions. In order to compare experimental and theoretical results, We have plotted each mode index of a wide range of fabrication conditions.

Branched DNA-based Synthesis of Fluorescent Silver Nanocluster

  • Park, Juwon;Song, Jaejung;Park, Joonhyuck;Park, Nokyoung;Kim, Sungjee
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1105-1109
    • /
    • 2014
  • While single strand DNAs have been widely used for the scaffold of brightly fluorescent silver nanoclusters (Ag NCs), double strand DNAs have not been as successful. Herein, we report a novel synthetic approach for bright Ag NCs using branched double strand DNAs as the scaffolds for synthesis. X-shaped DNA (X-DNA) and Y-shaped DNA (Y-DNA) effectively stabilized Ag NCs, and both X-DNA and Y-DNA resulted in brightly fluorescent Ag NCs. The concentration and molar ratio of silver and DNA were found important for the fluorescence efficiency. The brightest Ag NC with the photoluminescence quantum efficiency of 19.8% was obtained for the reaction condition of 10 ${\mu}M$ X-DNA, 70 ${\mu}M$ silver, and the reaction time of 48 h. The fluorescence lifetime was about 2 ns for the Ag NCs and was also slightly dependent on the synthetic condition. Addition of Cu ions at the Ag NC preparations resulted in the quenching of Ag NC fluorescence, which was different to the brightening cases of single strand DNA stabilized Ag NCs.

Chemical and Mechanical Sustainability of Silver Tellurite Glass Containing Radioactive Iodine-129

  • Lee, Cheong Won;Kang, Jaehyuk;Kwon, Yong Kon;Um, Wooyong;Heo, Jong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.3
    • /
    • pp.323-330
    • /
    • 2021
  • Silver tellurite glasses with melting temperature of approximately 700℃ were developed to immobilize 129I wastes. Long-term dissolution tests in 0.1 M acetic acid and disposability assessment were conducted to evaluate sustainability of the glasses. Leaching rate of Te, Bi and I from the glasses decreased for up to 16 d, then remained stable afterwards. On the contrary, tens to tens of thousands of times more of Ag was leached in comparison to the other elements; additionally, Ag leached continuously for all 128 d of the test owing to the exchange of Ag+ and H+ ions between the glasses and solution. The I leached much lower than those of other elements even though it leached ~10 times more in 0.1 M acetic acid than in deionized water. Some TeO4 units in the glass network were transformed to TeO3 by ion exchange and hydrolysis. These silver tellurite glasses met all waste acceptance criteria for disposal in Korea.

The Color Fading and Staining of Fabrics by Drum-type Washer (드럼세탁기 사용시 세탁물의 변.퇴색 방지에 관한 연구)

  • Ryu, Hyo-Seon;Kim, Eun-Ah;Yun, Chang-Sang
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.6
    • /
    • pp.947-958
    • /
    • 2008
  • To study the effect of a washing machine with silver nano technology on its detergency, the discoloring of the dyed clothes and the staining of standards adjacent fabrics were examined. As the laundry specimen, cotton fabric dyed with reactive dyes and Polyester fabric dyed with disperse dyes were chosen; and as the adjacent fabrics, undyed cotton. polyester and nylon fabrics were chosen. The colorfastness was evaluated after washing under conditions that those washing temperature, liquor ratio, detergency concentration and the type of water were varied. When the clothes were washed with the tap water contains silver ion, the deposition of silver compounds into the washed clothes was measured. As a results, after the washing in the various conditions, discoloring of the dyed clothes was not intense. The higher the washing temperature and the lower the liquor ratio, the larger the staining appeared on the white fabrics; especially for the white nylon fabrics. The concentration of detergent and the type of water affected hardly the colorfastness. After the repeated washing with the water contains silver, whiteness of the cotton and the nylon fabrics were lower than the result after the washing with the tap water, and a quantity of silver ions was found on the washed clothes.

The Coloring Effect of Glasses by Ag+ Ion Exchange (Ag+ 이온교환에 따른 유리의 착색 효과)

  • 이용근;이동인;윤종석;이희수
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.4
    • /
    • pp.499-504
    • /
    • 1989
  • Coloring effect, mechanical properties resulting from silver ions exchange of glasses immersed into the mixed molten salt of KNO3 and AgNO3 were investigated in this study. Ion exchange coloring of glasses made it possible to obtain glasses with a range from yellow to yellowish-brown, and spectral transmittance was investigated. The amount of ion exchange and peneration depth increased with treatment temperature and time. The activation energy decreased with mole fraction of AgNO3. It can be seem that the bending strength of ion exchanged glasses were 3~4 times higher than the parent glass and Ag+ colloids prevented from increasing surface microhardness.

  • PDF

Adsorption of Organic Compounds onto Mineral Substrate Prepared from Oyster Shell Waste

  • Jeon, Young-Woong;Jo, Myung-Chan;Noh, Byeong-Il;Shin, Choon-Hwan
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_2
    • /
    • pp.79-88
    • /
    • 2001
  • Humic acids react with chlorine to produce Trihalomethanes(THMs), known as carcinogens, during disinfection, the last stage in water purification. Currently, the removal of organic humic acids is considered the best approach to solve the problem of THM formation. Accordingly, the current study examined the adsorption of organic compounds of humic acids onto an inorganic carrier prepared from oyster shell waste. The adsorbent used was activated oyster shell powder(HAP) and silver ion-exchanged oyster shell powder(HAP-Ag), with CaCO$_3$ as the control. The adsorbates were phthalic acid, chelidamic acid, catechol, dodecylpyridinium chloride(DP), and 2-ethyl phenol(2-EP). The adsorption experiments were carried out in a batch shaker at $25^{\circ}C$ for 15 hours. The equilibrium concentration of the adsorbate solution was analyzed using a UV spectrophotometer and the data fitted to the Langmuir isotherm model. Since the solution pH values were found to be greater than the pKa values of the organic compounds used as adsorbates, the compounds apparently existed in ionic form. The adsorptive affinities of the organic acid and phenolic compounds varied depending on the interaction of electrostatic forces, ion exchange, and chelation. More carboxylic acids and catechol, rather than DP and 2-EP, were adsorbed onto HAP and HAP-Ag. HAP and HAP-Ag exhibited a greater adsorptive affinity for the organic compounds than CaCO$_3$, used as the control.

  • PDF