Browse > Article
http://dx.doi.org/10.7733/jnfcwt.2021.19.3.323

Chemical and Mechanical Sustainability of Silver Tellurite Glass Containing Radioactive Iodine-129  

Lee, Cheong Won (Pohang University of Science and Technology (POSTECH))
Kang, Jaehyuk (Pohang University of Science and Technology (POSTECH))
Kwon, Yong Kon (Pohang University of Science and Technology (POSTECH))
Um, Wooyong (Pohang University of Science and Technology (POSTECH))
Heo, Jong (Pohang University of Science and Technology (POSTECH))
Publication Information
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT) / v.19, no.3, 2021 , pp. 323-330 More about this Journal
Abstract
Silver tellurite glasses with melting temperature of approximately 700℃ were developed to immobilize 129I wastes. Long-term dissolution tests in 0.1 M acetic acid and disposability assessment were conducted to evaluate sustainability of the glasses. Leaching rate of Te, Bi and I from the glasses decreased for up to 16 d, then remained stable afterwards. On the contrary, tens to tens of thousands of times more of Ag was leached in comparison to the other elements; additionally, Ag leached continuously for all 128 d of the test owing to the exchange of Ag+ and H+ ions between the glasses and solution. The I leached much lower than those of other elements even though it leached ~10 times more in 0.1 M acetic acid than in deionized water. Some TeO4 units in the glass network were transformed to TeO3 by ion exchange and hydrolysis. These silver tellurite glasses met all waste acceptance criteria for disposal in Korea.
Keywords
Silver tellurite glass; Iodine; Long-term leaching behavior; Waste acceptance criteria;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 L. Dohmen, C. Lenting, R.O.C. Fonseca, T. Nagel, A. Heuser, T. Geisler, and R. Denkler, "Pattern Formation in Silicate Glass Corrosion Zones", Int. J. Appl. Glass Sci., 4(4), 357-370 (2013).   DOI
2 B.C. Bunker, G.W. Arnold, D.E. Day, and P.J. Bray, "The Effect of Molecular Structure on Borosilicate Glass Leaching", J. Non-Cryst. Solids, 87(1-2), 226-253 (1986).   DOI
3 B.V.R. Chowdari and P.P. Kumari, "Raman Spectroscopic Study of Ternary Silver Tellurite Glasses", Mater. Res. Bull., 34(2), 327-342 (1999).   DOI
4 B.V.R. Chowdari and P.P. Kumari, "Synthesis and Characterization of Silver Borotellurite Glasses", Solid State Ion., 86-88, Part 1, 521-526 (1996).   DOI
5 T. Geisler, T. Nagel, M.R. Kilburn, A. Janssen, J.P. Icenhower, R.O.C. Fonseca, M. Grange, and A.A. Nemchin, "The Mechanism of Borosilicate Glass Corrosion Revisited", Geochim. Cosmochim. Acta., 158, 112-129 (2015).   DOI
6 S. Gin, P. Jollivet, M. Fournier, F. Angeli, P. Frugier, and T. Charpentier, "Origin and Consequences of Silicate Glass Passivation by Surface Layers", Nat. Commun., 6, 6360 (2015).   DOI
7 D.M. Strachan and T.L. Croak, "Compositional Effects on Long-term Dissolution of Borosilicate Glass", J. Non-Cryst. Solids, 272(1), 22-33 (2000).   DOI
8 H.S. Lee, G.I. Park, K.H. Kang, J.M. Hur, J.G. Kim, D.H. Ahn, Y.Z. Cho, and E.H. Kim, "Pyroprocessing Technology Development at KAERI", Nucl. Eng. Technol., 43(4), 317-328 (2011).   DOI
9 B. Boizot, N. Ollier, F. Olivier, G. Petite, D. Ghaleb, and E. Malchukova, "Irradiation Effects in Simplified Nuclear Waste Glasses", Nucl. Instrum. Methods Phys. Res. B, 240(1-2), 146-151 (2005).   DOI
10 B.V.R. Chowdari and P.P. Kumari, "Studies on Ag2O. MxOy. TeO2 (MxOy=WO3, MoO3, P2O5 and B2O3) Ionic Conducting Glasses", Solid State Ion., 113-115, 665-675 (1998).   DOI
11 F.G.F. Gibb, "High-temperature, Very Deep, Geological Disposal: A Safer Alternative for High-level Radioactive Waste?", Waste Manage., 19(3), 207-211 (1999).   DOI
12 C. Cailleteau, F. Angeli, F. Devreux, S. Gin, J. Jestin, P. Jollivet, and O. Spalla, "Insight Into Silicate-Glass Corrosion Mechanisms", Nat. Mater., 7, 978-983 (2008).   DOI
13 B.V.R. Chowdari and P.P. Kumari, "Structure and Ionic Conduction in the Ag2O. WO3. TeO2 Glass System", J. Mater. Sci., 33, 3591-3599 (1998).   DOI
14 D.R. Haefner and T.J. Tranter. Methods of Gas Phase Capture of Iodine From Fuel Reprocessing Off-Gas: A Literature Survey, Idaho National Laboratory Report, INL/EXT-07-12299 (2007).
15 B.J. Riley, J.D. Vienna, D.M. Strachan, J.S. McCloy, and J.L. Jerden Jr., "Materials and Processes for the Effective Capture and Immobilization of Radioiodine: A Review", J. Nucl. Mater., 470, 307-326 (2016).   DOI
16 B.J. Riley, M.J. Schweiger, D.S. Kim, W.W. Lukens Jr., B.D. Williams, C. Iovin, C.P. Rodriguez, N.R. Overman, M.E. Bowden, D.R. Dixon, J.V. Crum, J.S. McCloy, and A.A. Kruger, "Iodine Solubility in a Low-Activity Waste Borosilicate Glass at 1000℃", J. Nucl. Mater., 452(1-3), 178-188 (2014).   DOI
17 P. Hrma, "Crystallization During Processing of Nuclear Waste Glass", J. Non-Cryst. Solids, 356(52-54), 3019-3025 (2010).   DOI
18 ASTM International. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM Report, ASTM C39 / C39M-21 (2018).
19 ASTM International. Standard Test Method for Thermal Cycling of Electroplated Plastics, ASTM Report, ASTM B553 (1985).
20 American National Standards Institute. Measurement of the Leachability of Solidified Low-Level Radioactive Wastes by a Short-Term Test Procedure, ANSI Report, ANSI/ANS-16.1-2019 (2019).
21 J.D. Ghys, B. Piriou, S. Rossignol, J.M. Reau, B. Tanguy, J.J. Videau, and J. Portier, "Investigation by Raman Scattering of the [TeO2-RMO0.5](M= Ag or Tl) Glasses and of the Related Ionic Conductors [TeO2-RMO0.5]1-x)[AgI]x", J. Non-Cryst. Solids, 170, 167-174 (1994).   DOI
22 United States Environmental Protection Agency. Test Method 1311: Toxicity Characteristic Leaching Procedure, part of Test Methods for Evaluating Solid Wastes, EPA Report, SW-846 (2003).
23 S. Sakida, S. Hayakawa, and T. Yoko, "Part 2.125Te NMR Study of M2O-TeO2 (M= Li, Na, K, Rb and Cs) Glasses", J. Non-Cryst. Solids, 243(1), 13-25 (1999).   DOI
24 C. Yu, Q. Cai, Z.X. Guo, Z. Yang, and S.B. Khoo, "Simultaneous Speciation of Inorganic Selenium and Tellurium by Inductively Coupled Plasma Mass Spectrometry Following Selective Solid-phase Extraction Separation", J. Anal. At. Spectrom., 19, 410-413 (2004).   DOI
25 B.V.R. Chowdari and P.P. Kumari, "Thermal, Electrical and XPS Studies of Ag2O.TeO2. P2O5 Glasses", J. Non-Cryst. Solids, 197(1), 31-40 (1996).   DOI
26 K.H. Kim, Y.G. Yu, and T.G. Kim. Comparison of Various Standard Test Methods for Characterization of Radioactive Waste Forms, Korea Atomic Energy Research Institute Technical Report, KAERI/TR-3695/2008 (2008).
27 T. Geisler, A. Janssen, D. Scheiter, T. Stephan, J. Berndt, and A. Putnis, "Aqueous Corrosion of Borosilicate Glass Under Acidic Conditions: A New Corrosion Mechanism", J. Non-Cryst. Solids, 356(28-30), 1458-1465 (2010).   DOI
28 R. Hellmann, S. Cotte, E. Cadel, S. Malladi, L.S. Karlsson, S.L. Perez, M. Cabie, and A. Seyeux, "Nanometre-scale Evidence for Interfacial Dissolution-Reprecipitation Control of Silicate Glass Corrosion", Nat. Mater., 14, 307-311 (2015).   DOI
29 J.H. Yoo, C.S. Seo, E.H. Kim, and H.S. Lee, "A Conceptual Study of Pyroprocessing for Recovering Actinides From Spent Oxide Fuels", Nucl. Eng. Technol., 40(7), 581-592 (2008).   DOI
30 C.W. Lee, J.Y. Pyo, H.S. Park, J.H. Yang, and J. Heo, "Immobilization and Bonding Scheme of Radioactive Iodine-129 in Silver Tellurite Glass", J. Nucl. Mater., 492, 239-243 (2017).   DOI
31 R.K. Farnsworth, E.D. Larsen, J.W. Sears, T.L. Eddy, and G.L. Anderson. Chemical and Mechanical Performance Properties for Various Final Waste Forms-PSPI Scoping Study, Idaho National Engineering Laboratory Report, INEL-94/0099 (1996).