• 제목/요약/키워드: Silver Alloy

검색결과 108건 처리시간 0.028초

Corrosion Behavior of Ti-6Al-4V Alloy after Plasma Electrolytic Oxidation in Solutions Containing Ca, P and Zn

  • Hwang, In-Jo;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.120-120
    • /
    • 2016
  • Ti-6Al-4V alloy have been used for dental implant because of its excellent biocompatibility, corrosion resistance, and mechanical properties. However, the integration of such implant in bone was not in good condition to achieve improved osseointergraiton. For solving this problem, calcium phosphate (CaP) has been applied as coating materials on Ti alloy implants for hard tissue applications because its chemical similarity to the inorganic component of human bone, capability of conducting bone formation and strong affinity to the surrounding bone tissue. Various metallic elements, such as strontium (Sr), magnesium (Mg), zinc (Zn), sodium (Na), silicon (Si), silver (Ag), and yttrium (Y) are known to play an important role in the bone formation and also affect bone mineral characteristics, such as crystallinity, degradation behavior, and mechanical properties. Especially, Zn is essential for the growth of the human and Zn coating has a major impact on the improvement of corrosion resistance. Plasma electrolytic oxidation (PEO) is a promising technology to produce porous and firmly adherent inorganic Zn containing $TiO_2(Zn-TiO_2)$coatings on Ti surface, and the a mount of Zn introduced in to the coatings can be optimized by altering the electrolyte composition. In this study, corrosion behavior of Ti-6Al-4V alloy after plasma electrolytic oxidation in solutions containing Ca, P and Zn were studied by scanning electron microscopy (SEM), AC impedance, and potentiodynamic polarization test. A series of $Zn-TiO_2$ coatings are produced on Ti dental implant using PEO, with the substitution degree, respectively, at 0, 5, 10 and 20%. The potentiodynamic polarization and AC impedance tests for corrosion behaviors were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to +2000mV. Also, AC impedance was performed at frequencies ranging from 10MHz to 100kHz for corrosion resistance.

  • PDF

PEM 연료전지 경량화를 위한 마그네슘 분리판의 성능평가 (Performance assessment of Magnesium Bipolar Plates for Light Weight PEM Fuel Cell)

  • 박토순;이동우;김경환;권세진
    • 한국항공우주학회지
    • /
    • 제40권12호
    • /
    • pp.1063-1069
    • /
    • 2012
  • 본 연구에서는 PEM 연료전지의 경량화를 위한 방안으로 밀도가 낮고 전기전도성이 높은 마그네슘 합금을 분리판에 적용하였다. 금속 분리판 표면의 부식 및 산화 방지막 형성을 위해서 스퍼터링을 이용하여 은(silver)을 증착하였다. 최적의 증착 조건 확립을 위한 내산성 평가에 있어서 미세균열이 발생하지 않는 3 ${\mu}m$를 최적 증착 두께로 선정하고, $180^{\circ}C$에서 코팅을 수행함으로써 증착 두께의 균일성을 향상시켰다. 단일전지 구성을 위한 분리판 형상결정을 위해서 체결압, 채널 깊이에 따른 성능을 비교평가 하였다. 제작된 분리판을 이용하여 단일전지를 구성하고, 코팅 유무 및 체결압과 채널 깊이별 전류-전압 성능을 비교평가 하였다. 코팅된 마그네슘 분리판은 최대 전력밀도 192 $mW/cm^2$로, 단위 중량당 전력 밀도가 기존 금속 분리판 대비 우수함을 확인하였다.

금속 코팅된 흑연 입자로 제조된 전극의 전기화학적 특성 (Electrochemical Characteristics of Metal Coated Graphite for Anodic Active Material of Lithium Secondary Battery)

  • 최원창;이중기;변동진;조병원
    • 전기화학회지
    • /
    • 제6권2호
    • /
    • pp.103-112
    • /
    • 2003
  • 리튬이차전지 음극활물질로 사용되는 합성흑연입자에 여러종류금속을 코팅하여 그 전기화학적특성을 조사하였으며, 구체적인 코팅방법으로는 가스분산스프레이 코팅법을 적용하였다. 본 연구범위내에서 금속을 코팅한 입자로 제조된 전극은 충방전시 형성되는 계면저항을 감소시킴으로서 결과적으로 원시료에 비해서 높은 방전용량을 나타내었다. CV실험을 통해서 은과 주석은 리튬과의 합금반응을 확인할 수 있었으나, 2.5 중량$\%$ 이하의 낮은 코팅량을 고려했을 때, 높은 분산도를 지닌 금속 물질의 코팅을 통한 전극 활물질 표면의 균일한 전도도의 증가가 주요원인인 것으로 사료되었다. 단일계 금속으로 코팅하였을 경우 은코팅한 전극활물질이 가장 높은 방전용량과 사이클특성을 나타내었고, 은을 기본으로 하는 이성분계에서는 은-니켈전극이 가장 높은 고율특성을 나타내었다.

A Study on the Electrical Characteristics of Different Wire Materials

  • Jeong, Chi-Hyeon;Ahn, Billy;Ray, Coronado;Kai, Liu;Hlaing, Ma Phoo Pwint;Park, Susan;Kim, Gwang
    • 마이크로전자및패키징학회지
    • /
    • 제20권4호
    • /
    • pp.47-52
    • /
    • 2013
  • Gold wire has long been used as a proven method of connecting a silicon die to a substrate in wide variety of package types, delivering high yield and productivity. However, with the high price of gold, the semiconductor packaging industry has been implementing an alternate wire material. These materials may include silver (Ag) or copper (Cu) alloys as an alternative to save material cost and maintain electrical performance. This paper will analyze and compare the electrical characteristics of several wire types. For the study, typical 0.6 mil, 0.8 mil and 1.0 mil diameter wires were selected from various alloy types (2N gold, Palladium (Pd) coated/doped copper, 88% and 96% silver) as well as respective pure metallic wires for comparison. Each wire model was validated by comparing it to electromagnetic simulation results and measurement data. Measurements from the implemented test boards were done using a vector network analyzer (VNA) and probe station setup. The test board layout consisted of three parts: 1. Analysis of the diameter, length and material characteristic of each wire; 2. Comparison between a microstrip line and the wire to microstrip line transition; and 3. Analysis of the wire's cross-talk. These areas will be discussed in detail along with all the extracted results from each type the wire.

백색금 합금용 모합금의 실리콘 함량에 따른 물성변화 (Properties of the Master Alloys for White Gold Products with Silicon Contents)

  • 송정호;노윤영;이현우;최민경;송오성
    • 한국재료학회지
    • /
    • 제25권2호
    • /
    • pp.90-94
    • /
    • 2015
  • We prepared 8 samples of non-silver and silver-added master alloys containing silicon to confirm the existence of nickel-silicides. We then prepared products made of 14K and 18K white gold by using the prepared master alloys containing 0.25, 0.35, and 0.50 wt% silicon to check for nickel release. We then employed the EN 1811 testing standard to investigate the nickel release of the white gold products, and we also confirmed the color of the white gold products with an UV-VIS-NIR-color meter. We observed $NiSi_x$ residue in all master alloys containing more than 0.50 wt% Si with EDS-nitric acid etching. For the white gold products, we could not confirm the existence of $NiSi_x$ through XRD after aqua-regia etching. In the EN 1811 test, only the white gold products with 0.25 wt% silicon master alloys successfully passed the nickel release regulations. Moreover, we confirmed that our white gold products showed excellent Lab indices as compared to those of commercial white gold ones, and the silver-added master alloys offered a larger L index. Our results indicate that employing 0.25 wt% silicon master alloys might be suitable for white gold products without nickel-silicide defects and nickel release problems.

카복실레이트계 시멘트의 접착력에 관한 비교 연구 (COMPARATIVE STUDIES OF THE ADHESIVE QUALITIES OF POLYCARBOXYLATE CEMENTS)

  • 이한무
    • 대한치과보철학회지
    • /
    • 제17권1호
    • /
    • pp.23-34
    • /
    • 1979
  • In this study, the adhesive strength of three commercial polycarboxylate cements to ten types of dental casting alloys, such as gold, palladium, silver, indium, copper, nickel, chromium, and human enamel and dentine were measured and compared with that of a conventional zinc phosphate cement. The $8.0mm{\times}3.0mm$ cylindrical alloy specimens were made by casting. The enamel specimens were prepared from the labial surface of human upper incisor, and the dentine specimens were prepared from the occulusal surface of the human molar respectively. Sound extracted human teeth, which had been kept in a fresh condition since, extraction, were mounted in a wax box with a cold-curing acrylic resin to expose the flattened area. The mounted teeth were then placed in a Specimen Cutter (Technicut) and were cut down under a water spray, and then the flat area on the all specimens were ground by hand with 400 and 600 grit wet silicone carbide paper. Two such specimens were then cemented together face-to-face with freshly mixed cement, and moderate finger pressure was applied to squeeze the cement to a thin and uniform film. All cemented specimens were then kept in a thermostatic humidor cabinet regulated at $23{\pm}2^{\circ}C.$ and more than 95 per cent relative humidity and tested after 24 hours and 1 week. Link chain was attached to each alloy specimen to reduce the rigidity of the jig assembly, and then all the specimens were mounted in the grips of the Instron Universal Testing Machine, and a tensile load was delivered to the adhering surface at a cross head speed of 0.20 mm/min. The loads to which the specimens were subjected were recorded on a chart moving at 0.50 mm/min. The adhesive strength was determined by measuring the load when the specimen separated from the cement block and by dividing the load by the area. The test was performed in a room at $23{\pm}2^{\circ}C.$ and $50{\pm}10$ per cent relative humidity. A minimum of five specimens were tested each material and those which deviated more than 15 per cent from the mean were discarded and new specimens prepared. From the experiments, the following results were obtained. 1) It was found that the adhesive strength of the polycarboxylate cement to all alloys tested was considerably greater than that of the zinc phosphate cement. 2) The adhesive strength of the polycarboxylate cements was superior to the non precious alloys, such as the copper, indium, nickel and chromium alloys, but it was inferior to the precious gold, silver and palladium alloys. 3) Surface treatment of the alloy was found to be an important factor in achieving adhesion. It appears that a polycarboxylate cement will adhere better to a smooth surface than to a rough one. This contrasts with zinc phosphate cements, where a rough helps mechanical interlocking. 4) The adhesion of the polycarboxylate cement with enamel was found superior to its adhesion with dentine.

  • PDF

조선시대 족자 장황에 사용된 고리의 재료 및 제작기법 연구 (A Study of Material and Production Technique of Scroll Painting Ring in Joseon)

  • 장연희;윤은영;권윤미;김수연
    • 박물관보존과학
    • /
    • 제16권
    • /
    • pp.56-81
    • /
    • 2015
  • 족자 고리는 끈이나 유소를 고정시켜 걸 수 있도록 하는 장황 부속품으로 형태가 다양하며 여러 금속재를 사용하여 제작되었다. 현재 전통 형식의 고리는 대부분 개장으로 인해 유실되었으며, 일본식 고리를 사용하고 있다. 따라서 본 연구에서는 국립중앙박물관에 소장된 전통 족자 19점을 대상으로 고리의 형태와 제작기법, 성분을 조사하여 옛 형태를 복원해 보고자 하였다. 의궤 내용에서 고리는 원환(圓環), 국화동(菊花童), 배목(排目) 등 고유의 명칭으로 기록되어 있다. 휴대용 엑스선 형광분석기(portable X-ray fluorescence, Artax, Rontec)로 성분을 분석한 결과, 전통 형식의 고리는 황동, 철, 은-구리합금 등 다양한 금속재로 확인되었다. 구리와 아연이 주성분인 황동은 17점 족자 고리에 사용되었다. 전 윤시달 초상(신2339)의 배목에서는 철을 사용하였으며, 주석-납 합금으로 도금하였다. 이서구 초상(신1065)에서는 고리 전체가 은-구리합금으로 제작되었음을 확인하였다. 광학현미경(Leica, M205A)으로 제작 방법을 조사한 결과 원환은 금속봉을 절단한 뒤 둥글게 휘어 만든 유형과 주조로 제작된 유형으로 확인되었다. 배목은 주조한 합금으로 봉재나 판재를 만들고 다시 단조과정을 거쳐 제작하였고, 배목장식은 금속판재를 잘라 형태를 만든 후 축조와 타출기법 등으로 무늬를 새겨 장식하였다.

서봉총 금제 과대 및 요패의 성분 분석 (A Scientific Analysis of the Gold Belt with Dangling Ornaments from Seobongchong Tomb)

  • 윤은영
    • 박물관보존과학
    • /
    • 제17권
    • /
    • pp.17-42
    • /
    • 2016
  • 신라시대 대형 고분인 서봉총에서 출토된 과대 1점과 요패 8점을 성분 분석하였다. 구성품을 크게 금판, 못, 영락, 금사 등으로 구분하여 성분비를 검토한 결과 모두 서로 다른 순도를 지닌 금제로 제작되었다. 과대에 사용된 금판은 순도 17~18K, 19~20K 두 가지로 구분되며, 못은 약 20K, 영락과 금사는 대부분 18K의 금으로 제작되었다. 요패에 사용된 금판 역시 대부분 17K~19K이며, 연결고리는 17~19K, 못은 17~20K, 영락과 금사는 약 19K의 금제로 확인되었다.

다양한 산소분압에 따른 용융 Ag-Sn 및 Ag-Cu 합금의 표면장력 (Surface Tension of Molten Ag-Sn and Au-Cu Alloys at Different Oxygen Partial Pressures)

  • 민순기;이준호
    • 한국재료학회지
    • /
    • 제19권1호
    • /
    • pp.13-17
    • /
    • 2009
  • A semi-empirical method to estimate the surface tension of molten alloys at different oxygen partial pressures is suggested in this study. The surface tension of molten Ag-Sn and Ag-Cu alloys were calculated using the Butler equation with the surface tension value of pure substance at a given oxygen partial pressure. The oxygen partial pressure ranges were $2.86{\times}10^{-12}$$1.24{\times}10^{-9}$ Pa for the Ag-Sn system and $2.27{\times}10^{-11}$$5.68{\times}10^{-4}$ Pa for the Ag-Cu system. In this calculation, the interactions of the adsorbed oxygen with other metallic constituents were ignored. The calculated results of the Ag-Sn alloys were in reasonable accordance with the experimental data within a difference of 8%. For the Ag-Cu alloy system at a higher oxygen partial pressure, the surface tension initially decreased but showed a minimum at $X_{Ag}$ = 0.05 to increase as the silver content increased. This behavior appears to be related to the oxygen adsorption and the corresponding surface segregation of the constituent with a lower surface tension. Nevertheless, the calculated results of the Ag-Cu alloys with the present model were in good agreement with the experimental data within a difference of 10%.

Investigating the Au-Cu thick layers Electrodeposition Rate with Pulsed Current by Optimization of the Operation Condition

  • Babaei, Hamid;Khosravi, Morteza;Sovizi, Mohamad Reza;Khorramie, Saeid Abedini
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권2호
    • /
    • pp.172-179
    • /
    • 2020
  • The impact of effective parameters on the electrodeposition rate optimization of Au-Cu alloy at high thicknesses on the silver substrate was investigated in the present study. After ensuring the formation of gold alloy deposits with the desired and standard percentage of gold with the cartage of 18K and other standard karats that should be observed in the manufacturing of the gold and jewelry artifacts, comparing the rate of gold-copper deposition by direct and pulsed current was done. The rate of deposition with pulse current was significantly higher than direct current. In this process, the duty cycle parameter was effectively optimized by the "one factor at a time" method to achieve maximum deposition rate. Particular parameters in this work were direct and pulse current densities, bath temperature, concentration of gold and cyanide ions in electrolyte, pH, agitation and wetting agent additive. Scanning electron microscopy (SEM) and surface chemical analysis system (EDS) were used to study the effect of deposition on the cross-sections of the formed layers. The results revealed that the Au-Cu alloy layer formed with concentrations of 6gr·L-1 Au, 55gr·L-1 Cu, 24 gr·L-1 KCN and 1 ml·L-1 Lauryl dimethyl amine oxide (LDAO) in the 0.6 mA·cm-2 average current density and 30% duty cycle, had 0.841 ㎛·min-1 Which was the highest deposition rate. The use of electrodeposition of pure and alloy gold thick layers as a production method can reduce the use of gold metal in the production of hallow gold artifacts, create sophisticated and unique models, and diversify production by maintaining standard karats, hardness, thickness and mechanical strength. This will not only make the process economical, it will also provide significant added value to the gold artifacts. By pulsating of currents and increasing the duty cycle means reducing the pulse off-time, and if the pulse off-time becomes too short, the electric double layer would not have sufficient growth time, and its thickness decreases. These results show the effect of pulsed current on increasing the electrodeposition rate of Au-Cu alloy confirming the previous studies on the effect of pulsed current on increasing the deposition rate of Au-Cu alloy.