DOI QR코드

DOI QR Code

Performance assessment of Magnesium Bipolar Plates for Light Weight PEM Fuel Cell

PEM 연료전지 경량화를 위한 마그네슘 분리판의 성능평가

  • Received : 2012.06.13
  • Accepted : 2012.11.22
  • Published : 2012.12.01

Abstract

In present paper, we used magnesium alloy having a lower density and higher electrical conductivity for bipolar plate to reduce the weight of PEM fuel cell. The silver was coated to prevent corrosion and form passivation film on the metal surface with sputtering. In acid proof evaluation for setting optimal coating conditions, the homogeneity of coating thickness was improved by coating with the thickness of 3 ${\mu}m$ which not indicated any micro cracks and the temperature $180^{\circ}C$. The performance test and evaluation based on the clamping pressure and channel depth to determine the configuration of bipolar plate for assembling single cell was implemented. And then we assembled single cell with this bipolar plate and implemented the performance test to ensure and compare the current-voltage performance followed as several factors such as coating or non-coating, the change of clamping pressure, the change of channel depth, etc. As these results, the maximum power density of single cell with the coated bipolar plate was 192 $mW/cm^2$ and it was confirmed that the power density per unit mass was better than existing metal bipolar plate.

본 연구에서는 PEM 연료전지의 경량화를 위한 방안으로 밀도가 낮고 전기전도성이 높은 마그네슘 합금을 분리판에 적용하였다. 금속 분리판 표면의 부식 및 산화 방지막 형성을 위해서 스퍼터링을 이용하여 은(silver)을 증착하였다. 최적의 증착 조건 확립을 위한 내산성 평가에 있어서 미세균열이 발생하지 않는 3 ${\mu}m$를 최적 증착 두께로 선정하고, $180^{\circ}C$에서 코팅을 수행함으로써 증착 두께의 균일성을 향상시켰다. 단일전지 구성을 위한 분리판 형상결정을 위해서 체결압, 채널 깊이에 따른 성능을 비교평가 하였다. 제작된 분리판을 이용하여 단일전지를 구성하고, 코팅 유무 및 체결압과 채널 깊이별 전류-전압 성능을 비교평가 하였다. 코팅된 마그네슘 분리판은 최대 전력밀도 192 $mW/cm^2$로, 단위 중량당 전력 밀도가 기존 금속 분리판 대비 우수함을 확인하였다.

Keywords

References

  1. Moon Young Seok, Cho Keong Yeop, 2003, "The development of alternative Energy technology and Agreements for Climate Change under Unstable Contractive Markets", EERI, Preliminary Research Report 03-11(문영 석, 조경엽, 2003, "불완전 경쟁시장하의 대체에 너지 기술개발과 기후변화협약", 에너지경제연구원, 기본연구보고서 03-11)
  2. Kim Tae Kyu, Sim Hyen Chul, Kwon Se Jin, 2007, "Bleneded Wing-body UAV with a Fuel Cell based Power Plant", KSAS '07 Spring Academic Conference
  3. Lee Seok Hyen, 2010, "The effects of Surface Treatment on electrical conductivity and corrosion resistance of Stainless Steel for Bipolar Plates of Polymer Electrolyte Membrane Fuel Cells", PhD Thesis, KAIST, Korea
  4. Thomas H. Bradley, Blake A. Moffitt, 2007, Dimitrii N.Mavris, David E. Parekh, "Development and experimental characterization of a fuel cell powered aircraft", Journal of Power sources, Vol.171, pp.793-801 https://doi.org/10.1016/j.jpowsour.2007.06.061
  5. Mark D. Guynn, Joshua E. Freeh, Erik D. Olson, 2004, "Evaluation of a Hydrogen Fuel cell Powered Blended-Wing-Body Aircraft Concept for Reduced Noise and Emissions", NASA/TM-2004-212989
  6. A.S. Woodman, E.B. Anderson, K.D. Jayne, and M.C. Kimble, 1999, "Development of Corrosion-Resistant Coatings for Fuel Cell Bipolar Plates", American Electroplaters and Surface Finishers Society(AESF)
  7. Kim Ki In, 2010, "Fabrication and Performance Evaluation of Metallic Bipolar Plates of PEM Fuel Cell for UAV Application", Master Thesis, KAIST, Korea
  8. J. Wind, R. Spӓh, W. Kaiser, G. Bohm, 2002, "Metallic bipolar plates for PEM fuel cells", J. Power Sources 105, pp. 256-260 https://doi.org/10.1016/S0378-7753(01)00950-8
  9. D.R. Hodgson, B. May, P.L. Adcock, D.P. Davies, 2001, "New lightweight bipolar plate system for polymer electrolyte membrane fuel cells", J. Power Sources 96, pp. 233-235 https://doi.org/10.1016/S0378-7753(01)00568-7
  10. Wang S-H, Peng J, Lui W-B, Zhang J-S., 2006, "Performance of the gold-plated titanium bipolar plates for the light weight PEM fuel cells", J. Power Sources. 162 pp. 486-491 https://doi.org/10.1016/j.jpowsour.2006.06.084
  11. Tawfika H., Hung Y., Mahajan D., 2007, "Metal bipolar plates for PEM fuel cell—A review", Journal of Power Sources, Vol. 163, pp.755-767 https://doi.org/10.1016/j.jpowsour.2006.09.088
  12. Reiners G, Griepentrog M., 1995, "Hard coatings on magnesium alloys by sputter deposition using a pulsed d.c. bias voltage", Surface and Coatings Technology, 77, pp. 809-814.
  13. Lee Hak Reol, "Metal Corrosion Engineering", Yeonkeong Pub. Cor., 2004 (이학 렬, "금속부식공학", 연경문화사, 2004)
  14. Bruce D. C., David S. A., 1997, "Handbook of Corrosion Data", 2nd, pp.74-79
  15. Yamamoto A., Wantanabe A., Sugahara K., Tsubakino H., Fukumoto S., 2001, "Improvement of corrosion resistance of magnesium alloys by vapor deposition", Scripta mater, pp.1039-1042
  16. Hones P., Diserens M., Levy F., 1999, "Characterization of sputter-deposited chromium oxide thin films", Surface ans Coating Technology, pp.277-283