• Title/Summary/Keyword: Silo

Search Result 186, Processing Time 0.025 seconds

A Case Study of Continuous Explosives Demolition at Han Kuk Flour Mills Silo (한국제분 SILO 연속적 발파해체 시공사례)

  • Song, Young-Suk;Jeong, Min-Su;Heo, Eui-Haeng;Jung, Dong-Wol
    • Explosives and Blasting
    • /
    • v.30 no.2
    • /
    • pp.77-85
    • /
    • 2012
  • This is the study about continuous explosives demolition to Han Kuk Flour Mills Silo(14 units) located in Mokpo. Considering the surroundings, We planned to collapse toward longitudinal direction of the silo. It had a lot of blast hole per silo in confined space. It could make lots of problems like Cut-off, collapse behavior, fragmentation after structure behavior. So we separated 14 units silo to two section for blast twice. At the first A-Section blast, there was Cut-off of detonating cord and we had to blast twice to collapse remained silo. After that the secondary B-Section blasting, we got the desired result of collapse behavior.

Case Studies on Shock Vibration at Coal Silo Structure of Power Plants (화력발전소 Coal Silo 구조물의 충격성 진동에 대한 사례 연구)

  • Im, Jung-Bin;Lee, Hong-Ki;Son, Sung-Wan;Park, Sang-Gon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.103-106
    • /
    • 2005
  • This paper reviews the dynamic load phenomenon referred to as 'silo quaking', caused shock vibration and loud noise, during gravity discharge in coal silos. Quaking in tall silo is examined using experimental data obtained from a Coal Power Plant and several experimental and numerical investigations available in the published literature. In the experiment, the acceleration was measured at various height on the silo column and floor and by doing so, not only could the variation of the amplitude of the quaking be observed, but also the propagation of waves could clearly be seen. Through an overview of recent research on this subject, it is shown that the current silo quaking is produced by slip-stick friction between the internal wall of silo and the granular material, i.e. coal.

  • PDF

The evaluation with ANSYS of stresses in hazelnut silos using Eurocode 1

  • Kibar, Hakan;Ozturk, Turgut
    • Structural Engineering and Mechanics
    • /
    • v.51 no.1
    • /
    • pp.15-37
    • /
    • 2014
  • In this study, the optimum silo dimensions for the barrel-type steel-concentrated silo with a conical outlet port usable in the hazelnut storage were investigated. Three different types of silo models as Model 1 (1635 tons), Model 2 (620 tons) and Model 3 (1124 tons) were used in the study. Varying wall thicknesses were used for Model 1 (10, 11, 12, 13, 14, 15 and 20 mm), Model 2 (10, 15 and 20 mm) and Model 3 (10, 15 and 20 mm) silos. For Model 1 silo has the most storage capacity here, to determine its optimum wall thickness, the wall thicknesses of 11, 12, 13 and 14 mm were used as different from the other models. Thus the stresses occurring in different lines with ANSYS finite element software were examined. In the study it was determined that the 10, 11 and 12 mm wall thicknesses of the Model 1 silo are not safe in terms of the stresses caused by the vertical pressure loads in the filling conditions. From the view of the filling and discharge conditions, other wall thicknesses and model silos were diagnosed to be secure. The optimum silo dimensions which won't cause any structural problems have been found out as the Model 1 silo with a 13 mm wall thickness when the filling capacity and the maximum von Mises stresses are taken into account. This barrel-type silo with conical outlet port sets forth the most convenient properties in hazelnut storing in terms of engineering.

A Case Study on Explosive Demolition of Cylindrical Silo (원통형 사일로 발파해체 시공사례)

  • Park, Hoon;Jang, Seong-Ok;Park, Hyong-Ki;Kim, Nae-Hoi;Suk, Chul-Gi
    • Explosives and Blasting
    • /
    • v.26 no.2
    • /
    • pp.52-63
    • /
    • 2008
  • Recently the demand of demolition for the unnecessary cylindrical silo structure is increasing due to deterioration and unsatisfactory functional conditions and the issue of demolition is becoming a major highlight. This case study introduced the explosive demolition of the cylindrical silo structure by felling method. The results of explosive demolition conducted on cylindrical silo structure using the felling method show, A silo had collapsed precisely according to estimated direction but in case of B silo there was a minor difference. The lower colunms and ring girder support was designed to the hinge line but in reality the lower colunms of the silo did not do its structural support role and only the ring girder support did its role successfully. As for the impact vibration, most of the measurements were within the estimated range.

On the steel cost of circular flat-bottomed silos designed using the Eurocodes

  • Gonzalez-Montellano, Carlos;Ramirez, Alvaro;Gallego, Eutiquio;Ayuga, Francisco
    • Structural Engineering and Mechanics
    • /
    • v.33 no.5
    • /
    • pp.561-572
    • /
    • 2009
  • Nowadays, Eurocodes have become the reference standards for silo design within the European Union. They include new procedures for load assessment and structural verifications aiming to design safer silos. However, many silo manufacturers are still reluctant to use them (or at least all their prescriptions) because of the loss of competitiveness they are experiencing in comparison with former standards. This paper shows how steel cost of flat-bottomed circular silos varies when different silo geometries and stored materials are considered. The influence of critical structural verifications on steel costs, such as buckling of the silo wall, were also analyzed and some conclusions and practical recommendations for silo designers were proposed.

Development of a Grain Drying and Storage System for Bulk Facilities of Grain Custody Warehouse -Square Silo System- (곡물보관창고의 산물시설화를 위한 곡물 건조저장시설의 개발 -사각 사일로 시스템-)

  • 정종훈;유수남
    • Journal of Biosystems Engineering
    • /
    • v.20 no.2
    • /
    • pp.151-161
    • /
    • 1995
  • A basic proposal on the design of a grain drying and storage system was suggested for the bulk facilities of grain custody warehouses. A model square silo system was designed and developed on the basis of the proposal. A square silo system made of steel plate was developed with a stirring device, an automatic moisture meter and an auto-control system of PLC. Then, the developed square silo system was evaluated through drying experiments with rough rice. The square silo system could dry grains uniformly with a stirring device and an auto-control system regardless of grain depth. The developed square silo system can be well adapted for the bulk facilities of grain custody warehouses.

  • PDF

Stability analyses of a cylindrical steel silo with corrugated sheets and columns

  • Sondej, Mateusz;Iwicki, Piotr;Wojcik, Michal;Tejchman, Jacek
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.147-166
    • /
    • 2016
  • The paper presents comprehensive quasi-static stability analysis results for a real funnel-flow cylindrical steel silo composed of horizontally corrugated sheets strengthened by vertical thin-walled column profiles. Linear buckling and non-linear analyses with geometric and material non-linearity were carried out with a perfect and an imperfect silo by taking into account axisymmetric and non-axisymmetric loads imposed by a bulk solid following Eurocode 1. Finite element simulations were carried out with 3 different numerical models (single column on the elastic foundation, 3D silo model with the equivalent orthotropic shell and full 3D silo model with shell elements). Initial imperfections in the form of a first eigen-mode for different wall loads and from 'in-situ' measurements with horizontal different amplitudes were taken into account. The results were compared with Eurocode 3. Some recommendations for the silo dimensioning were elaborated.

Irradiation Effect on Silo Dry Storage Systems for CANDU Spent Nuclear Fuel

  • Taehyung Na;Yeji Kim;Donghee Lee;Taehyeon Kim;Sunghwan Chung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.2
    • /
    • pp.117-128
    • /
    • 2024
  • The 300 concrete silo systems installed and operated at the site of Wolsong nuclear power plant (NPP) have been storing CANDU spent nuclear fuel (SNF) under dry conditions since 1992. The dry storage system must be operated safely until SNF is delivered to an interim storage facility or final repository located outside the NPP in accordance with the SNF management policy of the country. The silo dry storage system consists of a concrete structure, liner steel plate in the inner cavity, and fuel basket. Because the components of the silo system are exposed to high energy radiation owing to the high radioactivity of SNF inside, the effects of irradiation during long-term storage must be analyzed. To this end, material specimens of each component were manufactured and subjected to irradiation and strength tests, and mechanical characteristics before and after irradiation were examined. Notably, the mechanical characteristics of the main components of the silo system were affected by irradiation during the storage of spent fuel. The test results will be used to evaluate the long-term behavior of silo systems in the future.

Radiation Shielding Effect due to Cracks in Concrete Silo Dry Storage Systems

  • Donghee Lee;Sunghwan Chung;Taehyung Na
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.3
    • /
    • pp.377-385
    • /
    • 2024
  • The concrete silo dry storage system, which has been in operation at the Wolsong NPP site since 1992, consists of a concrete structure, a steel liner plate in the inner space, and a fuel basket. The silo system's concrete structure must maintain structural integrity as well as adequate radiation shielding performance against the high radioactivity of spent nuclear fuel stored inside the storage system. The concrete structure is directly exposed to the external climatic environment in the storage facility and can be expected to deteriorate over time owing to the heat of spent nuclear fuel, as well as particularly cracks in the concrete structure. These cracks may reduce the radiation shielding performance of the concrete structure, potentially exceeding the silo system's allowable radiation dose rate limits. For specimens with the same composition and physical properties as silo's concrete structures, cracks were forcibly generated and then irradiated to measure the change in radiation dose rate to examine the effect of cracks in concrete structures on radiation shielding performance, and in the current state, the silo system maintains radiation shielding performance.

Experiments on granular flow in a hexagonal silo: a design that minimizes dynamic stresses

  • Hernandez-Cordero, Juan;Zenit, R.;Geffroy, E.;Mena, B.;Huilgol, R.R.
    • Korea-Australia Rheology Journal
    • /
    • v.12 no.1
    • /
    • pp.55-67
    • /
    • 2000
  • In this paper, an experimental study of the rheological behavior of granular flow in a new type of storage silo is presented. The main characteristic of the new design is a hexagonal shape chosen with the objective of minimizing the stresses applied to the stored grains, and to reduce grain damage during the filling and emptying processes. Measurements of stress distribution and flow patterns are shown for a variety of granular materials. Because of the design of the silo, the granular material adopts its natural rest angle at all times eliminating collisional stresses and impacts between grains. A homogeneous, low friction flow is naturally achieved which provides a controlled stress distribution throughout the silo during filling and emptying. Secondary dynamic stresses, which are responsible for wall failure in conventional silos of the vertical type, are completely eliminated. A comparison between the two geometries is presented with data obtained for these silos and a number of granular materials. The discharge pattern inhibits powder formation in the silo and the filling system virtually eliminates unwanted material packing. Finally, notwithstanding the rheological advantages of this new design, the hexagonal cells that constitute the silo have many other advantages, such as the possible use of solar energy to control the humidity inside them. The cell type design allows for versatile storage capabilities and the elevation above the ground provides unlimited transportation facilities during emptying.

  • PDF