• Title/Summary/Keyword: Silicone Rubber Composite

Search Result 47, Processing Time 0.028 seconds

An Experimental investigation on the accelerated aging characteristics of silicone rubber for outdoor application (옥외용 실리콘 절연재의 가속열화특성 고찰)

  • Yang, W.Y.;Hwang, B.M.;Kim, K.S.;Cheon, C.O.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1232-1234
    • /
    • 1995
  • Specimem of silicone rubber used to make the weathersheds for High-Voltage composite insulator were aged in laboratory. The aging characteristics of silicone rubber have been assessed by compairing their hydrophobicity and electrical properties, before and after aging with weather ometer. Results show that their initial and time dependant characteristics are good.

  • PDF

Fabrication of the Superconducting Flux Flow Transistor Using the ICP Etching Method (ICP 장치를 이용한 초전도 자속 흐름 트랜지스터의 링크 제작)

  • Gang, Hyeong-Gon;Im, Yeon-Ho;Im, Seong-Hun;Choe, Hyo-Sang;Han, Yun-Bong;Han, Byeong-Seong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.10
    • /
    • pp.494-499
    • /
    • 2001
  • The effects of accelerated Ultraviolet (UV) radiation on High temperature vulcanized (HTV), Room temperature vulcanized (RTV) silicone rubber and two types of ethylene propylene diene terpolymer (EPDM) used for composite insulator were investigated by hydrophobicity class (HC), surface voltage decay after corona charging, SEM-ES, FTIR and XPS. The contact angle in two kinds of silicone rubber was scarcely change, but EPDM occurred to the loss of hydrophobicity followed by surface cracking and chalking. The surface voltage decay on UV-treated silicone rubber and EPDM showed a different decay trend with UV treatment. EDS and XPS analysis indicated that the oxygen content increased with UV treatment time in all samples. For silicone rubber, the oxidized groups of inorganic silica-like structure increased with UV treatment time. The oxidized carbon of C=O, O=C-O in EPDM increased. These oxidized surface for each material had different electrostatic characteristics, so deposited charges were expected to have different impacts on their surface hydrophobicity. The degradation mechanism based on our results was discussed.

  • PDF

Study of body movement monitoring utilizing nano-composite strain sensors contaning Carbon nanotubes and silicone rubber

  • Azizkhani, Mohammadbagher;Kadkhodapour, Javad;Anaraki, Ali Pourkamali;Hadavand, Behzad Shirkavand;Kolahchi, Reza
    • Steel and Composite Structures
    • /
    • v.35 no.6
    • /
    • pp.779-788
    • /
    • 2020
  • Multi-Walled Carbon nanotubes (MWCNT) coupled with Silicone Rubber (SR) can represent applicable strain sensors with accessible materials, which result in good stretchability and great sensitivity. Employing these materials and given the fact that the combination of these two has been addressed in few studies, this study is trying to represent a low-cost, durable and stretchable strain sensor that can perform excellently in a high number of repeated cycles. Great stability was observed during the cyclic test after 2000 cycles. Ultrahigh sensitivity (GF>1227) along with good extensibility (ε>120%) was observed while testing the sensor at different strain rates and the various number of cycles. Further investigation is dedicated to sensor performance in the detection of human body movements. Not only the sensor performance in detecting the small strains like the vibrations on the throat was tested, but also the larger strains as observed in extension/bending of the muscle joints like knee were monitored and recorded. Bearing in mind the applicability and low-cost features, this sensor may become promising in skin-mountable devices to detect the human body motions.

Evaluation of 1,1,2-trichloroethylene Removal Efficiency Using Composites of Nano-ZnO Photocatalyst and Various Organic Supports (다양한 유기계 지지체와 광촉매 Nano-ZnO 복합체를 활용한 1,1,2-trichloroethylene 제거 효율 평가)

  • Jang, Dae Gyu;Ahn, Hosang;Kim, Jeong Yeon;Ahn, Chang Hyuk;Lee, Saeromi;Kim, Jong Kyu;Joo, Jin Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.11
    • /
    • pp.771-780
    • /
    • 2014
  • In this study, the various organic supports (i.e., silicone, acrylonitrile-butadiene-styrene, epoxy, and, butadiene rubber) with great sorption capacity of organic contaminants were chosen to develop nano-ZnO/organic composites (NZOCs) and to prevent the detachment of nano-ZnO particles. The water resistance of the developed NZOCs were evaluated, and the feasibility of the developed NZOCs were investigated by evaluating the removal efficiency of 1,1,2-trichloroethylene (TCE) in the aqueous phase. Based on the results from water-resistance experiments, long-term water treatment usage of all NZOCs was found to be feasible. According to the FE-SEM, EDX, and imaging analysis, nano-ZnO/butadiene rubber composite (NZBC) with various sizes and types of porosity and crack was measured to be coated with relatively homogeneously-distributed nano-ZnO particles whereas nano-ZnO/silicone composite (NZSC), nano-ZnO/ABS composite (NZAC), and nano-ZnO/epoxy composite (NZEC) with poorly-developed porosity and crack were measured to be coated with relatively heterogeneously-distributed nano-ZnO particles. The sorption capacity of NZBC was close to 60% relative to the initial concentration, and this result was mainly attributed to the amorphous structure of NZBC, hence the hydrophobic partitioning of TCE to the amorphous structure of NZBC intensively occurred. The removal efficiency of TCE in aqueous phase using NZBC was close to 99% relative to the initial concentration, and the removal efficiency of TCE was improved as the amount of NZBC increased. These results stemmed from the synergistic mechanisms with great sorption capability of butadiene rubber and superior photocatalytic activities of nano-ZnO. Finally, the removal efficiency of TCE in aqueous phase using NZBC was well represented by linear model ($R^2{\geq}0.936$), and the $K_{app}$ values of NZBC were from 2.64 to 3.85 times greater than those of $K_{photolysis}$, indicating that butadiene rubber was found to be the suitable organic supporting materials with enhanced sorption capacity and without inhibition of photocatalytic activities of nano-ZnO.

A Study on the Flame Retardance and Electrical Properties of Silicone Composites (실리콘 복합체의 내화 및 전기 특성에 관한 연구)

  • Lee, Sung-Ill;Lee, Hae-Joon
    • Elastomers and Composites
    • /
    • v.38 no.3
    • /
    • pp.227-234
    • /
    • 2003
  • Silicone composites for high voltage insulator (HVI SC) were prepared by adding aluminum trihydrate(ATH) treated by surface treatment agent to base silicone compound at the ratio oi 100:20, 100:40, 100:60, 100:80, and 100:100, respectively And also, ATH was treated by various surface treatment agents, such as stearic arid, acryl silane, and vinyl silane under compounding process. Mechanical properties and electrical properties were investigated for the various contents of ATH and surface-treatment agents. Mechanical properties such as tensile strength, elongation, and tear strength decreased as the load of ATH increased. Volume resistivity, AC break down strength, and tracking resistance for HVI SC containing ATH treated by vinyl silane were better than those for HVI SC containing ATH treated by other surface treatment agents, such as stearic acid and acryl silane. Polymer-filler interaction of silicone composites according to surface treatment agents was studied by measuring bound rubber contend(BR). From the experimental results, BR of silicone composite containing ATH treated with vinyl silane was higher than that of the others. The degree of rule for silicone composite was investigated using Rheometer. Maximum torque of silicone composites contaning ATH treated with vinyl silane was higher than that of silicone composite contaning ATH treated with other surface agents.

Electrical and Mechanical Properties of Carbon Particle Reinforced Rubber for Electro-Active Polymer Electrode (전기활성 고분자 전극용 탄소입자 강화고무의 전기적 및 기계적 특성)

  • Lee, Jun Man;Ryu, Sang Ryeoul;Lee, Dong Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1465-1471
    • /
    • 2013
  • The electrical and mechanical properties of room temperature vulcanized (RTV) silicone rubber composites are investigated as functions of multi-walled carbon nanotube (CNT), carbon black (CB), and thinner content. The thinner is used to improve the CNT and CB dispersion in the matrix. The electrical and mechanical properties of the composite with CNT are improved when compared to the composite with CB at the same content. As the thinner content is 80 phr, the electric resistance of the composite decreases significantly with the CNT content and shows contact point saturation of CNT at 2.5 phr. As the thinner content increases, the dispersion of conductive particles improves; however, the critical CB content increases because of the reduction in the CB weight ratio. It is believed that an electrode that needs good flexibility and excellent electrical properties can be manufactured when the amount of CNT and CB are increased with the thinner content.

Preparation and Photoluminescence Characteristics of Liquid Silicone Rubber Containing Cadmium Selenide Nanoparticles (Cadmium Selenide Nanoparticles을 함유하는 액상실리콘 고무의 제조와 형광특성)

  • Kang Doo-Whan;Lee Byoung-Chul;Kim Ji-Young
    • Polymer(Korea)
    • /
    • v.30 no.3
    • /
    • pp.266-270
    • /
    • 2006
  • Poly [(dimethylmethylyinyl) siloxane] phosphineoxide (PMViSPO) was prepared by adding phosphorus oxychloride $(POCl_3)$ to poly (dimethylmethylyinyl) siloxane (PMViS) at $0^{\circ}C$ under nitrogen atmosphere. Cadmium selenide (CdSe) was prepared by reacting cadmium oxide (CdO), tetradecyl-phosphonic acid (TDPA), trioctylphosphine oxide (TOPO) at $300^{\circ}C$, and adding solution of dissolved Se to tributylphosphine (TBP) and trioctylphosphine (TOP) CdSe-poly [(dimethylmethylvinyl) siloxane] phosphine-oxide (CdSe-SPO) adduct was synthesised by adding PMViSPO to CdSe solution. Liquid silicone rubber composite (LSRC-1) was prepared by compounding $\alpha,\omega-vinyl$ poly (dimethylsiloxane) (VPMS), $\alpha,\omega-hydrogen$) poly(dimethylsiloxane) (HPMS), and CdSe under Pt catalyst, and also LSRC-2 was prepared from VPMS, HPMS, and CdSe-SPO using Pt catalyst. It was confirmed that CdSe nanoparticles with photoluminescence characteristics was dispersed uniformly in LSR matrix. The diameter of CdSe was $30\sim50nm$. By measuring the number of CdSe nanoparticles, 202 particles of CdSe in LSRC-2 and 165 particles of CdSe in LSRC-1 were dispersed in the same area of LSR matrix. Thermal stability for LSRC-2 compounded with CdSe-SPO was better than LSRC-1.

Effect of The Bending Strain of FRP Tube for Composite Bushing with Winding Tension (와인딩 장력이 composite 부싱용 FRP tube의 굽힘변형에 미치는 영향)

  • Cho, Han-Goo;Yoo, Dae-Hoon;Kang, Hyung-Kyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.380-381
    • /
    • 2009
  • This paper describes effect of the bending strain of FRP tube for composite bushing with winding tension. The composite bushing can be formed, by adding silicone rubber sheds to a tube of composite materials. The FRP tube is internal insulating part of a composite bushing and is designed to ensure the mechanical characteristics. Generally the properties of FRP tube can be influenced by the winding angle, wall thickness and winding tension. As winding tension is increased glass contents was increased in the range of 70.4~76.6%. In the bending test, winding tension is increased residual displacement was decreased in the range of 14.0~12.2 mm.

  • PDF

Properties of Composite Bushing with Filament Winding Tension (필라멘트 와인딩 장력에 따른 Composite Bushing의 특성에 관한 연구)

  • Cho, Han-Goo;Kim, Kwang-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.34-34
    • /
    • 2010
  • This paper describes effect of the bending deformation of high voltage composite bushing with winding tension. The composite bushing can be formed, by adding silicone rubber sheds to a tube of composite materials. The FRP tube is internal insulating part of a composite bushing and is designed to ensure the mechanical characteristics. Generally the properties of FRP tube can be influenced by the winding angle, wall thickness and winding tension. As winding tension is increased glass contents was increased in the range of 70.4~76.6%. In the bending test, winding tension is increased residual deflection was decreased in the range of 14.0~12.2 mm.

  • PDF

Development trend of composite insulator for distribution and transmission lines (송배전용 composite insulator개발 동향)

  • 강동필
    • Electrical & Electronic Materials
    • /
    • v.9 no.4
    • /
    • pp.410-414
    • /
    • 1996
  • 기존의 초고압 옥외절연물은 세라믹을 소재로한 porcelain이었지만 최근 신소재기술의 발달로 내열성, 내후성, 내트래킹성 등이 우수한 고분자 재료들이 개발됨에 따라 구미 선진국을 중심으로 이들의 전기절연물분야 적용이 크게 증가하고 있다. 인발(pultrusion)공법으로 glass fiber와 수지를 결합시켜 고강도 무결점의 FRP절연봉이나 tube를 만들 수가 있다. 절연물에서 요구되는 구조재로서의 기계적 특성은 FRP복합재료가 충족시킬 수 있는데 이러한 봉을 core재로 하여 절연물의 표면전기특성을 만족하도록 고무로 된 shed를 씌우고 양쪽 끝에 금구류를 부착하여 composite insulator를 만들 수가 있다. composite insulator는 여러개의 shed를 한번에 진공사출하거나 shed를 금형에서 찍어 조립하여 제작할 수가 있는데 지금까지 검토되어 온 어떤 고분자 절연물보다 특성이 우수하고 장점이 많기 때문에 상업적 가치를 인정받고 있다. 본 고에서는 옥외용 절연물의 절연성능과 섬락사고기구를 요약하고 고분자신소재 절연물인 composite insulator의 장점, 국내외 개발현황, 평가방법등을 정리하였다.

  • PDF