• 제목/요약/키워드: Silicon wafers

검색결과 424건 처리시간 0.025초

Acid Texturing에 의한 태양전지용 다결정 실리콘 기판의 표면 반사율 감소 (Surface Reflectance Reduction of Multicrystalline Silicon Wafers for Solar Cells by Acid Texturing)

  • 김지선;김범호;이수홍
    • 한국전기전자재료학회논문지
    • /
    • 제21권2호
    • /
    • pp.99-103
    • /
    • 2008
  • To improve efficiency of solar cells, it is important to make a light trapping structure to reduce surface reflectance for increasing absorption of sun light within the solar cells. One of the promising methods that can reduce surface reflectance is isotropic texturing with acid solution based on hydrofluoric acid(HF), nitric acid($HNO_3$), and organic additives. Anisotropic texturing with alkali solution is not suitable for multicrystalline silicon wafers because of its different grain orientation. Isotropic texturing with acid solution can uniformly etch multicrystalline silicon wafers unrelated with grain orientation, so we can get low surface reflectance. In this paper, the acid texturing solution is made up of only HF and $HNO_3$ for easy controlling the concentration and low cost compared to acid solution with organic additives. $HNO_3$ concentration and dipping time were varied to find the condition of minimum surface reflectance. Textured surfaces were observed Scanning Electron Microscope(SEM) and surface reflectance were measured. The best result of arithmetic mean(wavelength from 400 nm to 1000 nm) reflectance with acid texturing is 4.64 % less than alkali texturing.

실리콘 태양전지 응용을 위한 황 결핍 n형 MoS2 층 연구 (Sulfur Defect-induced n-type MoS2 Thin Films for Silicon Solar Cell Applications)

  • 이인승;김근주
    • 반도체디스플레이기술학회지
    • /
    • 제22권3호
    • /
    • pp.46-51
    • /
    • 2023
  • We investigated the MoS2 thin film layer by thermolytic deposition and applied it to the silicon solar cells. MoS2 thin films were made by two methods of dipping and spin coating of (NH4)2MoS4 precursor solution. We implemented two types of substrates of microtextured and nano-microtextured 6-in. Si pn junction wafers. The fabricated MoS2 thin film layer was analyzed, and solar cells were fabricated by applying the standard silicon solar cell process. The MoS2 thin film layer of sulfur-deficient form was deposited on the n-type emitter layer, and electrons, which are minority carriers, were well transported at the interface and exhibited photovoltaic solar cell characteristics. The cell efficiencies were achieved at 5% for microtextured wafers and 2.56% for nano-microtextured wafers.

  • PDF

Si 웨이퍼의 내부 금속 불순물 Fe의 결함분석 (Defect evaluation of Fe metallic contamination in silicon wafers)

  • 오민환;남효덕;김흥락;김동수;김영덕;김광일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.578-581
    • /
    • 2001
  • Silicon wafers using DRAM devices required for high cleaning technology and this cleaning technology was evaluated by defect level or electron life time. This paper examined the correlation of SPV(Surface Photo Voltaic Analyzer) which analyzes diffusion length of minority carriers and DLTS(Deep level Transient Spectroscope) which analyzes defect level.

  • PDF

슬립현상을 최소화 하기위한 급속열처리 (Rapid thermal annealing to minimize Slip)

  • 권경섭;이범학;황호정
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 전기.전자공학 학술대회 논문집
    • /
    • pp.375-378
    • /
    • 1988
  • In this paper a newly designed rapid thermal process (RTP) structure is proposed to the slip induced in silicon wafers considerably. The reflectors and a graphite radiation were used to compensate the temperature difference causing slip in silicon wafers. From our experiments it is known that slip can be removed during a rapid thermal annealing at high temperature.

  • PDF

절연막을 이용한 단면 표면조직화 결정질 실리콘 태양전지 (The Single-Side Textured Crystalline Silicon Solar Cell Using Dielectric Coating Layer)

  • 도겸선;박석기;명재민;유권종;송희은
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.245-248
    • /
    • 2011
  • Many researches have been carried out to improve light absorption in the crystalline silicon solar cell fabrication. The rear reflection is applied to increase the path length of light, resulting in the light absorption enhancement and thus the efficiency improvement mainly due to increase in short circuit current. In this paper, we manufactured the silicon solar cell using the mono crystalline silicon wafers with $156{\times}156mm^2$, 0.5~3.0 ${\Omega}{\cdot}cm$ of resistivity and p-type. After saw damage removal, the dielectric film ($SiN_x$)on the back surface was deposited, followed by surface texturing in the KOH solution. It resulted in single-side texturing wafer. Then the dielectric film was removed in the HF solution. The silicon wafers were doped with phosphorus by $POCl_3$ with the sheet resistance 50 ${\Omega}/{\Box}$ and then the silicon nitride was deposited on the front surface by the PECVD with 80nm thickness. The electrodes were formed by screen-printing with Ag and Al paste for front and back surface, respectively. The reflectance and transmittance for the single-sided and double-sided textured wafers were compared. The double-sided textured wafer showed higher reflectance and lower transmittance at the long wavelength region, compared to single-sided. The completed crystalline silicon solar cells with different back surface texture showed the conversion efficiency of 17.4% for the single sided and 17.3% for the double sided. The efficiency improvement with single-sided textured solar cell resulted from reflectance increase on back surface and light absorption enhancement.

  • PDF

HNO$_3:H_2O_2$ : HF 세척법을 이용한 실리콘 직접 접합 기술에 관한 연구 (Study on the Direct Bonding of Silicon Wafers by Cleaning in $HNO_3:H_2_O2:HF$)

  • 주철민;최우범;김영석;김동남;이종석;성만영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.3310-3312
    • /
    • 1999
  • We have studied the method of silicon direct bonding using the mixture of $HNO_$, $H_2O_2$, and HF chemicals called the controlled slight etch (CSE) solution for the effective wafer cleaning. CSE, two combinations of oxidizing and etching agents, have been used to clean the silicon surfaces prior to wafer bonding. Two wafers of silicon and silicon dioxide were contacted each other at room temperature and postannealed at $300{\sim}1100^{\circ}C$ in $N_2$ ambient for 2.5 h. We have cleaned silicon wafers with the various HF concentrations and characterized the parameters with regard to surface roughness, chemical nature, chemical oxide thickness, and bonding energy. It was observed that the chemical oxide thickness on silicon wafer decreased with increasing HF concentrations. The initial interfacial energy and final energy postannealed at $1100^{\circ}C$ for 2.5h measured by the crack propagation method was 122 $mJ/m^2$ and 2.96 $mJ/m^2$, respectively.

  • PDF

감압화학증착의 이단계 성장으로 실리콘 기판 위에 증착한 in-situ 인 도핑 다결정 실리콘 박막의 미세구조 조절 (Manipulation of Microstructures of in-situ Phosphorus-Doped Poly Silicon Films deposited on Silicon Substrate Using Two Step Growth of Reduced Pressure Chemical Vapor Deposition)

  • 김홍승;심규환;이승윤;이정용;강진영
    • 한국전기전자재료학회논문지
    • /
    • 제13권2호
    • /
    • pp.95-100
    • /
    • 2000
  • For the well-controlled growing in-situ heavily phosphorus doped polycrystalline Si films directly on Si wafer by reduced pressure chemical vapor deposition, a study is made of the two step growth. When in-situ heavily phosphorus doped Si films were deposited directly on Si (100) wafer, crystal structure in the film is not unique, that is, the single crystal to polycrystalline phase transition occurs at a certain thickness. However, the well-controlled polycrtstalline Si films deposited by two step growth grew directly on Si wafers. Moreover, the two step growth, which employs crystallization of grew directly on Si wafers. Moreover, the two step growth which employs crystallization of amorphous silicon layer grown at low temperature, reveals crucial advantages in manipulating polycrystal structures of in-situ phosphorous doped silicon.

  • PDF

대기압 플라즈마를 이용한 결정질 태양전지 표면 식각 공정 (Dry Etching Using Atmospheric Plasma for Crystalline Silicon Solar Cells)

  • 황상혁;권희태;김우재;최진우;신기원;양창실;권기청
    • 한국재료학회지
    • /
    • 제27권4호
    • /
    • pp.211-215
    • /
    • 2017
  • Reactive Ion Etching (RIE) and wet etching are employed in existing texturing processes to fabricate solar cells. Laser etching is used for particular purposes such as selective etching for grooves. However, such processes require a higher level of cost and longer processing time and those factors affect the unit cost of each process of fabricating solar cells. As a way to reduce the unit cost of this process of making solar cells, an atmospheric plasma source will be employed in this study for the texturing of crystalline silicon wafers. In this study, we produced the atmospheric plasma source and examined its basic properties. Then, using the prepared atmospheric plasma source, we performed the texturing process of crystalline silicon wafers. The results obtained from texturing processes employing the atmospheric plasma source and employing RIE were examined and compared with each other. The average reflectance of the specimens obtained from the atmospheric plasma texturing process was 7.88 %, while that of specimens obtained from the texturing process employing RIE was 8.04 %. Surface morphologies of textured wafers were examined and measured through Scanning Electron Microscopy (SEM) and similar shapes of reactive ion etched wafers were found. The Power Conversion Efficiencies (PCE) of the solar cells manufactured through each process were 16.97 % (atmospheric plasma texturing) and 16.29 % (RIE texturing).

홈파기를 이용한 새로운 실리콘 직접접합 기술 (A Novel Silicon Direct Bonding Technology using Groove Matrix)

  • 김은동;김남균;김상철;박종문;이승환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1995년도 추계학술대회 논문집
    • /
    • pp.81-84
    • /
    • 1995
  • A reliable bonding between two silicon wafers, regularly grooved and non-grooved, was done by the direct boning technology, It is Presented that high structural duality was realized not only at the bended interface but in the bulk, commensurate with the filling of artificial grooves, which would be attributed to the dislocation-gettering capability of groove free-surfaces during annealing. The groove filling would be explained with mass-transport phenomena assisted by the dislocation movement from initial contact boundaries toward groove surfaces. Intrinsic voids can be easily removed by aid of the grooves. The proposed method yielded also an intimate bonding not only between {111} wafers strongly misoriented and slightly inclined to {111} basal plane but even between {111} and {100} orientation wafers.

  • PDF

실리콘 직접 본딩에 의한 P-N 접합의 특성에 관한 연구 (A Study on Characterization of P-N Junction Using Silicon Direct Bonding)

  • 정원채
    • 한국전기전자재료학회논문지
    • /
    • 제30권10호
    • /
    • pp.615-624
    • /
    • 2017
  • This study investigated the various physical and electrical effects of silicon direct bonding. Direct bonding means the joining of two wafers together without an intermediate layer. If the surfaces are flat, and made clean and smooth using HF treatment to remove the native oxide layer, they can stick together when brought into contact and form a weak bond depending on the physical forces at room temperature. An IR camera and acoustic systems were used to analyze the voids and bonding conditions in an interface layer during bonding experiments. The I-V and C-V characteristics are also reported herein. The capacitance values for a range of frequencies were measured using a LCR meter. Direct wafer bonding of silicon is a simple method to fuse two wafers together; however, it is difficult to achieve perfect bonding of the two wafers. The direct bonding technology can be used for MEMS and other applications in three-dimensional integrated circuits and special devices.