• 제목/요약/키워드: Silicon vapor

검색결과 670건 처리시간 0.025초

다층 구조의 Hybrid flexible 박막 기술 연구 (Hybrid Passivation for a Flexible Organic Light Emitting Diode)

  • 이휘원;김영환;서대식;김영훈;문대규;한정인
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.269-270
    • /
    • 2005
  • A hybrid passivation method using parylene and silicon dioxide combination layer for a flexible organic light emitting diode (FOLED) was applied on a polycarbonate substrate. A parylene coating by vapor polymerization method is a highly effective passivation process for the FOLED, and it applies all top surface and the edges of the FOLED device. In order to minimize the permeation of moisture and oxygen from the top surface of the device, an additional layer of silicon dioxide was deposited over the parylene coated layer. It was found that the water vapor transmittance rate (WVTR) of parylene (15 m-in-thickness) / SiO2 (0.3$\mu$m-in-thickness) combination layers deposited on polycarbonate film was decreased under the value of 10-3 g/m2day. The FOLED with the hybrid passivation showed remarkably longer lifetime characteristics in the ambient conditions than the non-passivated FOLED. The lifetime of the passivated FOLED was 400 hours and it was more than ten times over the lifetime of the convectional non-passivated FOLED.

  • PDF

Production of Fine ZnO Powders by Carbothermal Reduction

  • Choi, Heon-Jin;Lee, June-Gunn;Jung, Kwang-Taik;Kim, Ki-Hwan
    • The Korean Journal of Ceramics
    • /
    • 제4권4호
    • /
    • pp.304-310
    • /
    • 1998
  • Carbothermal reduction has been one of the important processes for the production of ceramic raw materials such as silicon carbide, silicon nitride, boron carbide, etc. The process has also been one of several trials for the recovery of ZnO from ZnO-containing waste. It usually involves two consecutive steps: the evolution of Zn vapor and its oxidation with air. In this study a ZnO-containing raw material is reduced by carbon at $1250^{\circ}C$ and the evolved Zn vapor is oxidized with air, resulting in fine powders of ZnO. computer programs, THERMO and PYROSIM developed by MINTEK, are used to simulate the process thermodynamically and the results are compared with the experimental results. It is shown that the ZnO-containing raw material can be reduced and can form fine ZnO with the yield as high as 98.7% under a proper condition. Based on these results, a process is engineered for the production of ZnO in a rotary kiln at a rate of 3 tons/day. The produced ZnO powders show properties suitable to the usual applications in ceramic industries with a purity of > 95wt% and an average particle size of ∼3${\mu}m$.

  • PDF

Heteroepitaxial Growth of Single 3C-SiC Thin Films on Si (100) Substrates Using a Single-Source Precursor of Hexamethyldisilane by APCVD

  • Chung, Gwiy-Sang;Kim, Kang-San
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권4호
    • /
    • pp.533-537
    • /
    • 2007
  • This paper describes the heteroepitaxial growth of single-crystalline 3C-SiC (cubic silicon carbide) thin films on Si (100) wafers by atmospheric pressure chemical vapor deposition (APCVD) at 1350 oC for micro/nanoelectromechanical system (M/NEMS) applications, in which hexamethyldisilane (HMDS, Si2(CH3)6) was used as a safe organosilane single-source precursor. The HMDS flow rate was 0.5 sccm and the H2 carrier gas flow rate was 2.5 slm. The HMDS flow rate was important in obtaing a mirror-like crystalline surface. The growth rate of the 3C-SiC film in this work was 4.3 μm/h. A 3C-SiC epitaxial film grown on the Si (100) substrate was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), reflection high energy electron diffraction (RHEED), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and Raman scattering, respectively. These results show that the main chemical components of the grown film were single-crystalline 3C-SiC layers. The 3C-SiC film had a very good crystal quality without twins, defects or dislocations, and a very low residual stress.

HWCVD를 이용한 Amorphous Si 박막 증착공정에서 수소량에 따른 박막성장 특성 (Hydrogen-Dependent Catalytic Growth of Amorphous-Phase Silicon Thin-Films by Hot-Wire Chemical Vapor Deposition)

  • 박승일;지형용;김명준;김근주
    • Current Photovoltaic Research
    • /
    • 제1권1호
    • /
    • pp.27-32
    • /
    • 2013
  • We investigated the growth mechanism of amorphous-phase Si thin films in order to improve the film characteristics and circumvent photo-degradation effects by implementation of hot-wire chemical vapor deposition. Amorphous silicon thin films grown in a silane/hydrogen mixture can be decomposed by a resistive heat filament. The structural properties were observed by Raman spectroscopy, FTIR, SEM, and TEM. The electrical properties of the films were measured by photo-conductivity, dark-conductivity, and photo-sensitivity. The contents of Si-H and $Si-H_n$ bonds were measured to be 19.79 and 9.96% respectively, at a hydrogen flow rate of 5.5 sccm, respectively. The thin film has photo-sensitivity of $2.2{\times}10^5$ without a crystalline volume fraction. The catalyst behavior of the hot-wire to decompose the chemical precursors by an electron tunneling effect depends strongly on the hydrogen mixture rate and an amorphous Si thin film is formed from atomic relaxation.

탄화규소 휘스커의 (II): 적층결함 (Synthesis of Silicon Carbide Whiskers (II): Stacking Faults)

  • 최헌진;이준근
    • 한국세라믹학회지
    • /
    • 제36권1호
    • /
    • pp.36-42
    • /
    • 1999
  • 2단계 열탄소환원법으로 탄화규소 휘스커를 기상-고상, 2단계, 기상-액상-고상 성장기구로 각각 합성하였다. 그리고 휘스커에 있는 적층결합을 X-ray와 투과전자현미경을 이용하여 분석하였다. 탄화규소 휘스커에 있는 적층결함은 휘스커의 지름과 상관관계가 있는 것으로 나타났다. 즉, 기상-고상, 2단계 성장, 기상-액상-고상 성장기구에 상관없이 지름이 1$\mu\textrm{m}$이하로 작아지는 경우 적층결합이 많아지고, 기상-액상-고상 기구로 성장한 지름이 2$\mu\textrm{m}$보다 큰 경우 적층결함이 거의 없는 것으로 나타났다. 이같은 현상은 휘스커 지름이 작아짐에 따라 휘스커의 비표면적이 증가하는 때문인 것으로 판단되었다.

  • PDF

화학증착법에 의하여 제조된 탄화규소 코팅층의 기계적 특성 (Mechanical Properties of Chemical Vapor Deposited SiC Coating Layer)

  • 이현근;김종호;김도경
    • 한국세라믹학회지
    • /
    • 제43권8호
    • /
    • pp.492-497
    • /
    • 2006
  • SiC coating has been introduced as protective layer in TRISO nuclear fuel particle of High Temperature Gas cooled Reactor (HTGR) due to excellent mechanical stability at high temperature. In order to inhibit the failure of the TRISO particles, it is important to evaluate the fracture strength of the SiC coating layer. ]n present work, thin silicon carbide coating was fabricated using chemical vapor deposition process with different microstructures and thicknesses. Processing condition and surface status of substrate.affect on the microstructure of SiC coating layer. Sphere indentation method on trilayer configuration was conducted to measure the fracture strength of the SiC film. The fracture strength of SiC film with different microstructure and thickness were characterized by trilayer strength measurement method nanoindentation technique was also used to characterize the elastic modulus and th ε hardness of the SiC film. Relationships between microstructure and mechanical properties of CVD SiC thin film were discussed.

Heating Behavior of Silicon Carbide Fiber Mat under Microwave

  • Khishigbayar, Khos-Erdene;Seo, Jung-Min;Cho, Kwang-Youn
    • 한국세라믹학회지
    • /
    • 제53권6호
    • /
    • pp.707-711
    • /
    • 2016
  • A small diameter of SiC fiber mat can produce much higher heat under microwave irradiation than the other types of SiC materials. Fabrication of high strength SiC fiber consists of iodine vapor curing on polycarbosilane precursor and heat treatment process. The curing stage of polycarbosilane fiber was maintained at $150-200^{\circ}C$ in a vacuum condition under the iodine vapor to fabricate a high thermal radiation SiC fiber. The structure and morphology of the fibers were characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TG) and scanning electron microscopy (SEM). In this study, the thermal properties of SiC fiber mats under microwave have been analyzed with an IR thermal camera and its image analyzer. The prepared SiC fiber mats radiated high temperature with extremely high heating rate up to $1100^{\circ}C$ in 30 seconds. The fabricated SiC fiber mats were not oxidized after the heat radiation process under the microwave irradiation.

소형의 평판형 냉각장치 개발 (Development of Small Flat Plate Type Cooling Device)

  • 문석환;황건;강승열;조경익
    • 설비공학논문집
    • /
    • 제22권9호
    • /
    • pp.614-619
    • /
    • 2010
  • Recently, a problem related to the thermal management in portable electronic and telecommunication devices is becoming issued. That is due to the trend of a slimness of the devices, so it is not easy to find the optimal thermal management solution for the devices. From now on, a pressed circular type cooling device has been mainly used, however the cooling device with thin thickness is becoming needed by the inner space constraint of the applications. In the present study, the silicon flat plate type cooling device with the separated vapor and liquid flow path was designed and fabricated. The normal isothermal characteristics created by vapor-liquid phase change was confirmed through the experimental study. The cooling device with 70 mm of total length showed 6.8 W of the heat transfer rate within the range of $4{\sim}5^{\circ}C/W$ of thermal resistance. In the future, it will be possible to develop the commercialized cooling device by revising the fabrication process and enhancing the thermal performance of the silicon and glass cooling device.

기상합성법을 이용하여 합성한 단일 실리콘 나노선에 대한 광전류 측정 (Photocurrent of Single Silicon Nanowire Synthesized by Themical Chemical Vapor Deposition)

  • 김경환;김기현;강정민;윤창준;정동영;민병돈;조경아;김상식;서민철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.7-8
    • /
    • 2005
  • Silicon(Si) nanowires have been grown by thermal chemical vapor deposition using the 20h ball-milled SiO powders under controlled conditions without the catalyst. For the synthesis of Si nanowires, $Al_2O_3$ substrates were used. Current-Voltage(I-V) and photoresponses were measured for the single Si nanowire in vacuum at room temperature. The light sources for these measurements were the 325 nm wavelength line from a He-Cd laser and the 633 nm wavelength line from a He-Ne laser. The intensity of the photoresponse is independent of the illumination time. And rise and decay times of the photoresponses are shorter than 1 sec.

  • PDF

CVD공정으로 제작된 멀티레이어 그래핀의 압저항 효과를 이용한 직접화된 압력센서 개발 (Development of Integration Pressure Sensor Using Piezoresistive Effect of Chemical Vapor Deposition (CVD) Produced Multilayer Graphene)

  • 임대윤;하태원;이칠형
    • 센서학회지
    • /
    • 제32권6호
    • /
    • pp.470-474
    • /
    • 2023
  • In this study, a diaphragm-type pressure sensor was developed using multi-layer(four-layer) graphene produced at 1 nm thickness by thermally transferring single-layer graphene produced by chemical vapor deposition (CVD) to a 6" silicon wafer. By measuring the gauge factor, we investigated whether it was possible to produce a pressure sensor of consistent quality. As a result of the measurement, the pressure sensor using multilayer graphene showed linearity and had a gauge factor of about 17.5. The gauge factor of the multilayer graphene-based pressure sensor produced through this study is lower than that of doped silicon, but is more sensitive than a general metal sensor, showing that it can be sufficiently used as a commercialized sensor.