• Title/Summary/Keyword: Silicon photomultiplier (SiPM)

Search Result 25, Processing Time 0.02 seconds

Development of a wireless radiation detection backpack using array silicon-photomultiplier (SiPM)

  • Kim, Jeong Ho;Back, Hee Kyun;Joo, Koan Sik
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.456-460
    • /
    • 2020
  • In this research, a radiation detection backpack to be used discreetly or by a wide range of users was developed using array silicon-photomultiplier (SiPM) and CsI (Tl), and its characteristics were evaluated. The R-squared value, which indicates the responsiveness of a detector based on the signal intensity, was determined to be 0.981, indicating a good linear responsivity. The energy resolutions for gamma radiation energies of Co-57 (122 keV), Ba-133 (356 keV), Cs-137 (662 keV), and Co-60 (1332 keV) were found to be 13.40, 10.50, 6.77, and 3.16%, respectively. These results confirm good energy resolution characteristics. Furthermore, in the case of mixed sources, the gamma radiation peaks were readily distinguishable, and the R-squared value for energy linearity was calculated to be 0.999, demonstrating an exceptional energy linearity. Further research based on the results of this study would enable the commercialization of lightweight SiPM-based wireless radiation detection backpacks that can be used for longer durations by replacing the photomultiplier tube, which is mainly used as the optical sensor in existing radiation detection backpacks.

Spectroscopic Properties of a Silicon Photomultiplier-based Ce:GAGG Scintillation Detector and Its Applicability for γ-ray Spectroscopy (감마선 분광분석을 위한 실리콘 광 증배소자 기반 Ce:GAGG 섬광검출기의 분광특성 연구)

  • Park, Hye Min;Kim, Jeong Ho;Kim, Dong Seong;Joo, Koan Sik
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.2
    • /
    • pp.73-78
    • /
    • 2015
  • In this study, a scintillation detector was fabricated using a silicon photomultiplier (SiPM) and a Ce:GAGG scintillator single crystal, and its spectroscopic properties were compared with those of commercially available LYSO and CsI:Tl scintillators using ${\gamma}$-ray spectroscopy. The energy resolutions of the self-produced scintillation detector composed of the scintillator single crystal (volume: $3{\times}3{\times}20mm^3$) and SiPM (Photosensitive area: $3{\times}3mm^2$) for standard ${\gamma}$-ray sources, such as $^{133}Ba$, $^{22}Na$, $^{137}Cs$ and $^{60}Co$ were measured and compared. As a result, the energy resolutions of the proposed Ce:GAGG scintillation detector for g-rays, as measured using its spectroscopic properties, were found to be 13.5% for $^{133}Ba$ 0.356 MeV, 6.9% for $^{22}Na$ 0.511 MeV, 5.8% for $^{137}Cs$ 0.662 MeV and 2.3% for $^{60}Co$ 1.33 MeV.

Feasibility Study on Development of an Underwater Beta-ray Monitoring Sensor (수중 내 베타선 모니터링 센서 개발을 위한 기초연구)

  • Park, Hye Min;Joo, Koan Sik
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.333-336
    • /
    • 2016
  • In this study, a beta monitoring sensor was developed as a part of basic research for quantitative beta monitoring underwater, and its performance was evaluated using a calibration source. A beta detection sensor was manufactured by using SiPM(silicon photomultiplier) and $CaF_2$:Eu, YAG:Ce, YAP:Ce scintillator. A large-area light guide was introduced to improve beta-ray detection efficiency. As calibration sources, the Beta source $^{90}Sr$, which is the main fission product of a nuclear accident, and the gamma source $^{137}Cs$ are used. In the performance evaluation, it is confirmed that scintillator $CaF_2:Eu$ gives the highest beta-ray detection response. Compared to gamma ray, beta-ray detection responsivity and detection efficiency are verified. Therefore, this study is expected to contribute to basic research in the development of an underwater beta-ray monitoring system.

Development of PET Detector Module Measuring DOI using Multiple Reflectors (여러 반사체를 사용한 양전자방출단층촬영기기의 반응 깊이 측정 검출기 모듈 개발)

  • Kim, Neung Gyun;Kim, Gu;Kwak, Jong Hyeok;Lee, Seung-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.6
    • /
    • pp.825-830
    • /
    • 2019
  • A detector module measuring a depth of interaction was developed using silicon photomultiplier (SiPM) and two layers of scintillation crystal array treated with multiple reflectors. When reconstructing an image based on a signal obtained by using different types of reflector of each layer, the interaction positions of scintillation pixels and gamma rays could be tracked by utilizing the feature that all scintillation pixels were recorded at different positions. The bottom layer uses a specular reflector, and the top layer uses a diffuse reflector to differently process the size of the signal obtained from the SiPM. The optical grease was used to recude the sharp refractive index change between the layers of scintillator and the SiPM. The signals obtained from the 16 SiPMs were reduced to four signals using the Anger equations, and the images were reconstructed using them. All the scintillation pixels composed of the two layers appeared in the reconstructed image, which distinguished the layer where the scintillation pixels and gamma rays interacted. If the detectors, which measure the interaction depth of two layers using different reflectors, will be applied to preclinical positron emission tomography, the degradation of spatial resolution appearing outside the field of interest could be solved.

Simulation of a neutron imaging detector prototype based on SiPM array readout

  • Mengjiao Tang;Lianjun Zhang;Bin Tang;Gaokui He;Chang Huang;Jiangbin Zhao;Yang Liu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3133-3139
    • /
    • 2023
  • Neutron imaging technology as a means of non-destructive detection of materials is complementary to X-ray imaging. Silicon photomultiplier (SiPM), a new type of optical readout device, has overcome some shortcomings of traditional photomultiplier tube (PMT), such as high-power consumption, large volume, high price, uneven gain response, and inability to work in strong magnetic fields. Its application in the field of neutron detection will be an irresistible general trend. In this paper, a thermal neutron imaging detector based on 6LiF/ZnS scintillation screen and SiPM array readout was developed. The design of the detector geometry was optimized by geant4 Monte Carlo simulation software. The optimized detector was evaluated with a step wedge sample. The results show that the detector prototype with a 48 mm × 48 mm sensitive area can achieve about 38% detection efficiency and 0.26 mm position resolution when using a 300 ㎛ thick 6LiF/ZnS scintillation screen and a 2 mm thick Bk7 optical guide coupled with SiPM array, and has good neutron imaging capability. It provides effective data support for developing high-performance imaging detectors applied to the China Spallation Neutron Source (CSNS).

Development of hand-held coded-aperture gamma ray imaging system based on GAGG(Ce) scintillator coupled with SiPM array

  • Jeong, Manhee;Hammig, Mark
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2572-2580
    • /
    • 2020
  • Emerging gamma ray detection applications that utilize neutron-based interrogation result in the prompt emission of high-energy (>2 MeV) gamma-rays. Rapid imaging is enabled by scintillators that possess high density, high atomic number, and excellent energy resolution. In this paper, we evaluate the bright (50,000 photons/MeV) oxide scintillator, cerium-doped Gd2Al2Ga3O12 (GAGG(Ce)). A silicon photomultiplier (SiPM) array is coupled to a GAGG(Ce) scintillator array (12 × 12 pixels) and integrated into a coded-aperture based gamma-ray imaging system. A resistor-based symmetric charge division circuit was used reduce the multiplicity of the analog outputs from 144 to 4. The developed system exhibits 9.1%, 8.3%, and 8.0% FWHM energy resolutions at 511 keV, 662 keV, and 1173.2 keV, respectively. In addition, a pixel-identification resolution of 602 ㎛ FWHM was obtained from the GAGG(Ce) scintillator array.

REPLACEMENT OF A PHOTOMULTIPLIER TUBE IN A 2-INCH THALLIUM-DOPED SODIUM IODIDE GAMMA SPECTROMETER WITH SILICON PHOTOMULTIPLIERS AND A LIGHT GUIDE

  • KIM, CHANKYU;KIM, HYOUNGTAEK;KIM, JONGYUL;LEE, CHAEHUN;YOO, HYUNJUN;KANG, DONG UK;CHO, MINSIK;KIM, MYUNG SOO;LEE, DAEHEE;KIM, YEWON;LIM, KYUNG TAEK;YANG, SHIYOUNG;CHO, GYUSEONG
    • Nuclear Engineering and Technology
    • /
    • v.47 no.4
    • /
    • pp.479-487
    • /
    • 2015
  • The thallium-doped sodium iodide [NaI(Tl)] scintillation detector is preferred as a gamma spectrometer in many fields because of its general advantages. A silicon photomultiplier (SiPM) has recently been developed and its application area has been expanded as an alternative to photomultiplier tubes (PMTs). It has merits such as a low operating voltage, compact size, cheap production cost, and magnetic resonance compatibility. In this study, an array of SiPMs is used to develop an NaI(Tl) gamma spectrometer. To maintain detection efficiency, a commercial NaI(Tl) $2^{\prime}{\times}2^{\prime}$ scintillator is used, and a light guide is used for the transport and collection of generated photons from the scintillator to the SiPMs without loss. The test light guides were fabricated with polymethyl methacrylate and reflective materials. The gamma spectrometer systems were set up and included light guides. Through a series of measurements, the characteristics of the light guides and the proposed gamma spectrometer were evaluated. Simulation of the light collection was accomplished using the DETECT 97 code (A. Levin, E. Hoskinson, and C. Moison, University of Michigan, USA) to analyze the measurement results. The system, which included SiPMs and the light guide, achieved 14.11% full width at half maximum energy resolution at 662 keV.

Improved measurement uncertainty of photon detection efficiency for single pixel Silicon photomultiplier

  • Yang, Seul Ki;Lee, Hye-Young;Jeon, Jina;Kim, Sug-Whan;Lee, Jik;Park, Il H.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.210.1-210.1
    • /
    • 2012
  • We report technique used for improved measurement uncertainties for Photon detection efficiency(PDE) of $1mm^2$ single pixel SiPM. It consists of 470nm LED light source, two 2-inch integrating sphere and two NIST calibrated silicon photodiodes that have ${\pm}2.4%$ calibration error. With raytracing simulation of our experimental setup, we predict number of photon into SiPM and measurement uncertainty. For MPPC, Hamamatsu suggested PDE(1600 micro pixel) including crosstalk and afterpulse is 23.5% at 470 nm. By using new low calibration error photodiode and raytracing simulation, our simulation result has ${\pm}3%$ measurement uncertainty. The technical detail of measurement, simulation are presented with the results and implication.

  • PDF

Characteristics Analysis of SiPM for Detection of High Sensitivity of Portable Detectors (휴대용 검출기의 방사선 고감도 검출을 위한 SiPM 특성 분석)

  • Byung-Wuk Kang;Sun-Kook Yoo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.897-902
    • /
    • 2023
  • The purpose of this paper is to analyze the characteristics of Silicon Photomultiplier (SiPM) for the realization of high-sensitivity radiation detection in portable detectors. Portable X-ray detectors offer the advantage of quickly accessing the patient's location and obtaining real-time images, allowing physicians to perform rapid diagnoses. However, this mobility comes with challenges in achieving accurate radiation detection. In existing detectors, SiPM is used for a simple purpose of detecting X-ray triggers. To verify the feasibility of high-sensitivity X-ray detection through SiPM, seven types of SiPM sensors were compared and selected, and their characteristics were analyzed. The SiPM used in the final test demonstrated the ability to distinguish signals at the ultra-low radiation level of 10 nGy, and it was observed that the slope of the signal rise curve varies with the X-ray tube voltage. Utilizing the characteristics of SiPM, which exhibits changes in signal level and duration with X-ray dose, it appears possible to achieve high-sensitivity measurements for X-ray detection.

Development of a Real-time Radiation Level Monitoring Sensor for Building an Underwater Radiation Monitoring System (수중 방사선 감시체계 구축을 위한 실시간 방사선 준위 모니터링 센서 개발)

  • Park, Hye Min;Joo, Koan Sik
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.96-100
    • /
    • 2015
  • In the present study, we developed a real-time radiation-monitoring sensor for an underwater radiation-monitoring system and evaluated its effectiveness using reference radiation sources. The monitoring sensor was designed and miniaturized using a silicon photomultiplier (SiPM) and a cerium-doped-gadolinium-aluminum-gallium-garnet (Ce:GAGG) scintillator, and an underwater wireless monitoring system was implemented by employing a remote Bluetooth communication module. An acrylic water tank and reference radiation sources ($^{137}Cs$, $^{90}Sr$) were used to evaluate the effectiveness of the monitoring sensor. The underwater monitoring sensor's detection response and efficiency for gamma rays and beta particles as well as the linearity of the response according to the gammaray intensity were verified through an evaluation. This evaluation is expected to contribute to the development of base technology for an underwater radiation-monitoring system.