• Title/Summary/Keyword: Silicon nitride ceramics

Search Result 119, Processing Time 0.022 seconds

Effect of Additive Composition on Mechanical Properties of Silicon Carbide Sintered with Aluminum Nitride and Erbium Oxide

  • Lee, Sung-Hee;Kim, Young-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.1
    • /
    • pp.16-21
    • /
    • 2005
  • The effect of additive composition, using AlN and $Er_{2}O_{3}$ as sintering additives, on the mechanical properties of liquid-phase-sintered, and subsequently annealed SiC ceramics was investigated. The microstructures developed were quantitatively analyzed by image analysis. The average thickness of SiC grains increased with increasing the $Er_{2}O_{3}/(AlN + Er_{2}O_{3})$ ratio in the additives whereas the aspect ratio decreased with increasing the ratio. The mechanical properties versus $Er_{2}O_{3}/(AlN + Er_{2}O_{3})$ ratio curve had a maximum; i.e., there was a small composition range at which optimum mechanical properties were realized. The best results were obtained when the ratio ranged from 0.4 to 0.6. The flexural strength and fracture toughness of the SiC ceramics were $550\~650\;MPa$ and $5.5\~6.5$ MPa${\cdot}m^{1/2}$, respectively.

Aqueous Processing of Textured Silicon Nitride Ceramics by Slip Casting in a Strong Magnetic Field

  • Zhu, Xinwen;Uchikoshi, Tetsuo;Sakka, Yoshio
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.866-867
    • /
    • 2006
  • This work will report a highly textured ${\beta}-Si_3N_4$ ceramic by aqueous slip casting in a magnetic field and subsequent pressureless sintering, Effects of the sintering aids, polymer dispersant, pH and stirring time on the stability of the $Si_3N_4$ slurries were studied. The textured ${\beta}-Si_3N_4$ with 97 % relative density could be obtained by slip casting in a magnetic field of 12 T and subsequent sintering at $1800^{\circ}C$ for 1 h. The textured microstructure is featured by the alignment of c-axis of ${\beta}-Si_3N_4$ crystals perpendicular to the magnetic field, and the Lotgering orientation factor, f, is determined to be 0.8.

  • PDF

Nanostructure Ceramics of Silicon Nitride Produced by Spark Plasma Sintering

  • Hojo, Junichi;Hotta, Mikinori
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.323-324
    • /
    • 2006
  • The nanostructure control of $Si_3N_4$ ceramics can be achieved by using fine starting powder and retardation of grain growth. The spark plasma sintering technique is useful to retard the grain growth by rapid heating. In the present work, the change of microstructure was investigated with emphasis on the particle size of starting powder, the amount of sintering additive and the heating schedule. The rapid heating by spark plasma sintering gave the fine microstructure consisting of equiaxed grains with the same size as starting particles. The spark plasma sintering of $Si_3N_4$ fine powder was effective to control the microstrucutre on nano-meter level.

  • PDF

Microstructural Development of $Si_3N_4$ Ceramics Containing Aligned ${\beta}-Si_3N_4$ Whisker Seeds (배향된 질화규소 휘스커 종자를 함유한 질화규소 세라믹스의 미세구조에 관한 연구)

  • Bae, Byoung-Chan;Park, Dong-Soo;Seo, Won-Chan;Bang, Kook-Soo;Park, Chan
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.32-38
    • /
    • 2009
  • Silicon nitride samples with aligned whisker seeds were prepared with different amounts of yttria and alumina as the sintering additives. Their sintering behaviors and the microstructural developments between $1850^{\circ}C$ and $2050^{\circ}C$ were examined. The sample with larger amount of the sintering additives showed faster densification and grain growth. Even though addition of the aligned whisker seeds slightly retarded densification of silicon nitride, it improved the flexural strength and the fracture toughness. Both the flexural strength and the fracture toughness of silicon nitride with the aligned whisker seeds were increased as the amount of the sintering additives was increased.

Cutting Characteristics on Rake Angle in Laser-Assisted Machining of Silicon Nitride (질화규소의 예열선삭가공시 경사각에 따른 절삭특성)

  • Shin, Dong-Sig;Lee, Jae-Hoon;Lim, Se-Hwan;Kim, Jong-Do;Lee, Su-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.4
    • /
    • pp.47-54
    • /
    • 2009
  • In the last few years, lasers have found new applications as tools for ceramic machining which is laser-assisted machining(LAM). LAM process for the machining of difficult-to-machine materials such as structural ceramics, has recently been studied on silicon nitride workpiece for a wide range of operating condition. However, there have been few studies on rake angle in LAM process. In this paper we analyzed difference of machinability between positive and negative rake angle in tools. We have obtained interesting results that we could eliminate chattering, lower specific cutting and cutting ratio in case of positive rake angle. The results suggest that positive rake angled tools can make more plastic deformation and stable cutting of silicon nitride in comparison with negative rake angled one.

A Propotition of a New Parameter in Ceramic Wear(I) Friction and Wear Characteristics of Silicon Nitride and Zirconia (세라믹 마멸에 있어서의 새로운 파라메터 제안 (I) 질화규소와 지르코니아의 마찰$\cdot$마멸 특성)

  • ;;Hsu, S. M.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1441-1455
    • /
    • 1993
  • Under unlubricated condition, the friction and wear tests of silicon nitride and zirconia manufactured by HIP were carried out at room temperature. The wear resistance of silicon nitride was superior to that of zirconia under low load, whereas the wear resistance of zirconia was superior to that of silicon nitride under high load. Wear model of ceramic was suggested by the microscopic SEM observation of worn surfaces and debris. Theoretical analysis and discussions based on linear fracture mechanics were made out about this ceramic wear model. From the theoretical analysis, a new nondimensional parameter, Scf, was introduced to estimate wear rate of ceramics. This new nondimentional parameter consists of contact pressure, surface defect of contact material, frictional coefficient and fracture toughness.

Thermal Shock and Hot Corrosion Resistance of Si3N4 Fabricated by Nitrided Pressureless Sintering (질화상압(NPS)법으로 제조한 질화규소의 열충격 저항성 및 내부식성 특성평가)

  • Kwak, Kil-Ho;Kim, Chul;Han, In-Sub;Lee, Kee-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.478-483
    • /
    • 2009
  • Thermal shock and hot corrosion resistance of silicon nitride ceramics are investigated in this study. Silicon nitrides are fabricated by nitride pressureless sintering (NPS) process, which process is the continuous process of nitridation reaction of Si metal combined with subsequent pressureless sintering. The results of thermal shock test show it sustains 400MPa of initial strength during test in the designated condition of ${\Delta}T=700{\sim}25^{\circ}C$ up to maximum 4,800 cycles. Hot corrosion tests also reveal that the strength degradation of NPS silicon nitride did not occur at $700^{\circ}C$ with an exposure in Ar, $H_2$, Na and K for 1,275 h.

A study on the Grindability of Fine Ceramics by Experimental Method (실험적 방법에 의한 파인세라믹스의 연삭성에 관한 연구)

  • Kim, Seong-Kyeum
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.3
    • /
    • pp.35-42
    • /
    • 2011
  • This paper describes the characteristics of high speed grinding and the influence of wheel surface speed V and a grindability of the grinding materials. The various fine ceramics pieces was ground by metal and vitrified bonded diamond wheel. The surface roughness of fine ceramics(Zirconia($ZrO_2$), Silicon Carbide(SiC), Silicon Nitride($Si_3N_4$), Alumina($Al_2O_3$)) decreases from $0.05{\mu}m(R_{max})$ to $0.025{\mu}m(R_{max})$ when the wheel speed at grinding point increases the wheel speed. Relation between the temperature at grinding point and surface roughness was linear. Abrasive jet machining(AJM), a specialized from of shot blasting, is considered one of the most helpful micro machining methods for hard and brittle materials such as glasses and ceramics by constant pressure grinding.

Densification of Reaction Bonded Silicon Nitride with the Addition of Fine Si Powder - Effects on the Sinterability and Mechanical Properties

  • Lee, Sea-Hoon;Cho, Chun-Rae;Park, Young-Jo;Ko, Jae-Woong;Kim, Hai-Doo;Lin, Hua-Tay;Becher, Paul
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.3
    • /
    • pp.218-225
    • /
    • 2013
  • The densification behavior and strength of sintered reaction bonded silicon nitrides (SRBSN) that contain $Lu_2O_3-SiO_2$ additives were improved by the addition of fine Si powder. Dense specimens (relative density: 99.5%) were obtained by gas-pressure sintering (GPS) at $1850^{\circ}C$ through the addition of fine Si. In contrast, the densification of conventional specimens did not complete at $1950^{\circ}C$. The fine Si decreased the onset temperature of shrinkage and increased the shrinkage rate because the additive helped the compaction of green bodies and induced the formation of fine $Si_3N_4$ particles after nitridation and sintering at and above $1600^{\circ}C$. The amount of residual $SiO_2$ within the specimens was not strongly affected by adding fine Si powder because most of the $SiO_2$ layer that had formed on the fine Si particles decomposed during nitridation. The maximum strength and fracture toughness of the specimens were 991 MPa and $8.0MPa{\cdot}m^{1/2}$, respectively.