• Title/Summary/Keyword: Silicon crystal

Search Result 674, Processing Time 0.019 seconds

Analysis of Temperature Distribution using Finite Element Method for SCS Insulator Wafers (유한요소법을 이용한 SCS 절연 웨이퍼의 온도분포 해석)

  • Kim, O.S.
    • Journal of Power System Engineering
    • /
    • v.5 no.4
    • /
    • pp.11-17
    • /
    • 2001
  • Micronization of sensor is a trend of the silicon sensor development with regard to a piezoresistive silicon pressure sensor, the size of the pressure sensor diaphragm have become smaller year by year, and a microaccelerometer with a size less than $200{\sim}300{\mu}m$ has been realized, In this paper, we study some of the bonding processes of SCS(single crystal silicon) insulator wafer for the microaccelerometer. and their subsequent processes which might affect thermal loads. The finite element method(FEM) has been a standard numerical modeling technique extensively utilized in micro structural engineering discipline for design of SCS insulator wafers. Successful temperature distribution analysis and design of the SCS insulator wafers based on the tunneling current concept using microaccelerometer depend on the knowledge about normal mechanical properties of the SCS and $SiO_2$ layer and their control through manufacturing processes.

  • PDF

RADIAL UNIFORMITY OF NEUTRON IRRADIATION IN SILICON INGOTS FOR NEUTRON TRANSMUTATION DOPING AT HANARO

  • KIM MYONG-SEOP;LEE CHOONG-SUNG;OH SOO-YOUL;HWANG SUNG-YUL;JUN BYUNG-JIN
    • Nuclear Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.93-98
    • /
    • 2006
  • The radial uniformity of neutron irradiation in silicon ingots for neutron transmutation doping (NTD) at HANARO is examined by both calculations and measurements. HANARO has two NTD holes named NTD1 and NTD2. We have been using the NTD2 hole for 5 in. NTD commercial service, and we intend to use two holes for 6 in. NTD. The objective of this study is to predict the radial uniformity of 6 in. NTD at the two holes. The radial neutron flux distributions inside single crystal and noncrystal silicon loaded at the NTD2 hole are calculated by the VENTURE code. For NTD1, the radial distributions of the reaction rate for a 6 in. NTD with a neutron screen are calculated by MCNP, and measured by gold wire activation. The results of the measurements are compared with those of the calculations. From the VENTURE calculation, it is confirmed that the neutron flux distribution in the single crystal silicon is much flatter than that in the non-crystal silicon. The non-uniformities of the measurements for radial neutron irradiation are slightly larger than those of the calculations. However, excluding local dips in the measurements, the overall trends of the distributions are similar. The radial resistivity gradient (RRG) for a 5 in. silicon ingot is estimated to be about $1.5\%$. For a 6 in. ingot, the RRG of a silicon ingot irradiated at HANARO is predicted to be about $2.1\%$. Also, from the experimental results, we expect that the RRG would not be larger than $4.4\%$.

Effect of defects on lifetime of silicon electrodes and rings in plasma etcher (플라즈마 에쳐용 실리콘 전극과 링의 수명에 미치는 결함의 영향)

  • Eum, Jung-Hyun;Chae, Jung-Min;Pee, Jae-Hwan;Lee, Sung-Min;Choi, Kyoon;Kim, Sang-Jin;Hong, Tae-Sik;Hwang, Choong-Ho;Ahn, Hak-Joon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.2
    • /
    • pp.101-105
    • /
    • 2010
  • Silicon electrode and ring in a plasma etcher those are in contact with harsh plasma suffer from periodic heating and cooling during their lifetime. This causes the silicon components failure due to thermal stress remaining the persistent slip bands (PSBs) on their surfaces. The factors that determine the lifetime of silicon electrode and ring were discussed with respect to silicon ingot. The impurity level and the average defect concentration measured with glow discharge mass spectrometer (GDMS) and microwave photo-conductance decay (${\mu}$-PCD) were compared with the grade of silicon ingots those are divided to slip-free and slip-allowed ingot. Some silp-allowed samples showed planar defects along <110> direction on {001} surface. The role of these defects was suggested from the viewpoint of the lifetime of silicon components.

Fabrication and characteristics of photoluminescing Si prepared by spark process (Spark process법을 이용한 photoluminescence용 실리콘의 제조 및 특성)

  • 장성식;강동헌
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.3
    • /
    • pp.299-305
    • /
    • 1995
  • Visible photoluminescing (PL) silicon at room temperature has been prepared by a dry technique, that is, by spark processing, contrary to anodically etched porous silicon. PL peak maximum of photoluminescing spark processed Si was shifted to blue 520 nm. The stability of spark processed Si towards degradation upon UV radiation was found to be extremely high. Results from high resolution TEM, XRD and XPS studies suggest that spark processed silicon involves minute nanocrystalline (polycrystalline) particles which are imbedded in an amorphous matrix, preferably $SiO_2$.

  • PDF

Critical factors in sol-gel transition of silicon metal alkoxide solutions (Silicon metal alkoxide 용액의 sol-gel 전이에서 중요인자)

  • ;;Hiromitsu Kozuka;Sumio Sakka
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.4
    • /
    • pp.332-342
    • /
    • 1995
  • The important factors of reaction conditions in sol-gel transition of silicon alkoxide solution have been reviewed and discussed on the basis of Raman study. Various factors such as type of catalyst, alkoxide, solvent, drying control chemical additive and water content affect the conversion mechanism in sol-gel process.

  • PDF

A Study on the Ultraprecision Polishing of Single Crystal Silicon using Electrorheolgical Fluids. (전기점성유체를 이용한 단결정 실리콘의 초정밀 연마에 관한 연구)

  • 박성준;이성재;김욱배;이상조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.27-36
    • /
    • 2003
  • The Electro-Rheological (ER) fluid has been used to the ultraprecision polishing of single crystal silicon as new polishing slurry whose properties such as yield stress and particle structure changed with the application of an electric field. In this work, it is aimed to find the effective parameters in the ER fluid on material removal in the polishing system whose structure is similar to that of the simple hydrodynamic bearing. The generated pressure in the gap between a moving wall and a workpiece, as well as the electric field-induced stress of the mixture of ER fluid-abrasives, is evaluated experimentally, and their influence on the polishing of single crystal silicon is analyzed. Moreover, the behavior of abrasive and ER particles is described.

Numerical Study of Melt Flow Pattern by Thermal Gradient of the Crucible in the Czochralski Process (초크랄스키법에서 도가니의 온도구배가 유동장에 미치는 영향에 대한 수치해석 연구)

  • Park, Jong-In;Han, Jeong-Whan
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.11
    • /
    • pp.734-739
    • /
    • 2009
  • It is well known that the temperature and the flow pattern of the crystal-melt interface affect the qualities of the single crystal in the Czochralski process. Thus the temperature profile in the growth system is very important information. This work focuses on controlling the temperature of the silicon melt with a thermal gradient of the crucible. Therefore, the side heater is divided into three parts and an extra heater is added at the bottom for thermal gradient. The temperature of the silicon melt can be strongly influenced and controlled by the electric power of each heater.

Synthesis of zeolite MFI films on alumina and silicon supports using seed crystals (알루미나와 실리콘 지지체에 종자결정에 의한 제올라이트 MFI 필름의 합성)

  • Ko, Tae-Seog
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.38-44
    • /
    • 2008
  • Contiuous c-oriented zeolite MFI films $(<35{\mu}m)$ were prepared by hydrothermal secondary growth of silicalite-1 seed crystal in the surface of alumina porous substrate and silicon substrate. The supported films were characterized with scanning electron microscopy and X-ray diffraction. Effect of substrate surface roughness were investigated and a mechanism for c-oriented film formation and characteristic dom-like defects formation which is observed after seeding growth was discussed. The roughness of substrate plays an important role.