• Title/Summary/Keyword: Silicon carbon composite

Search Result 106, Processing Time 0.028 seconds

Fracture Characteristics and Stress Analysis of $Si_3N_4/SM45C$ Joint ($Si_3N_4/SM45C$ 접합부의 응력해석 및 파괴특성)

  • 김기성
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.248-253
    • /
    • 1998
  • Recently, the uses of Ceramic/metal bonded joints, resin/metal joints, adhesive joints, composite materials which are composed of dissimiliar materials have increased in various industry fields. Since the ceramic/metal bonded joints material is made at a high temperature, residual stress distributions due to differences in material properties were investigated by varying material parameters. The two dimensional finite element analysis was performed to study residual stress distribution in Si3N4/SM45C bonded joint with a copper interlayer between the silicon nitride(Si3N4) and the structural carbon steel(SM45C) and 4-point bending tests were carried out under room temperature. Fracture surface and crack propagation path were observed using scanning electron microscope and characteristics of its fracture was discussed.

  • PDF

Mechanical Properties of Carbon Fiber/Si/SiC and Carbon Fiber/C/SiC Composites (탄소섬유/Si/SiC 및 탄소섬유/탄소/SiC 복합재의 기계적 물성)

  • 신동우;박삼식;김경도;오세민
    • Composites Research
    • /
    • v.12 no.3
    • /
    • pp.8-16
    • /
    • 1999
  • Carbon woven fabric/C/SiC composites were fabricated by multiple impregnations of carbon woven fabric/carbon preform with the polymer precursor of SiC, i.e., polycarbosilane. In addition, two kinds of low density carbon/carbon preforms which had different fiber volume fraction and fiber orientation, i.e., a carbon woven fabric(${\thickapprox}$55 vol%)/carbon and a chopped carbon fiber${\thickapprox}$40 vol%)/carbon composites, were reaction-bonded with a silicon melt at 1$700^{\circ}C$ in a vacuum to fabricate dense carbon fiber/Si/SiC composites. The reaction-bonding process increased the density to ~2.1 g/$cm^3$ from 1.6 g/$cm^3$ and 1.15 g/$cm^3$ of a carbon woven and a chopped carbon preforms, respectively. All of the composites fractured with extensive fiber pull-out. The higher the density the higher the stiffness and proportional limit stress. The mechanical properties obtained from a three-point bend and tension tests were compared. The ratios of the peak tensile stresses to the bending strengths of a carbon woven and a chopped carbon composites were about one-third, respectively. The carbon woven fabric/Si/SiC composites with density of 2.06 g/$cm^3$ showed ~120 MPa of ultimate strength and ~80 MPa of proportional limit in bend testing.

  • PDF

Tribological Properties of Reaction-Bonded SiC/Graphite Composite According to Particle Size of Graphite (반응소결 SiC/Graphite 복합체에서 Graphite 입자의 크기에 따른 마찰마모특성)

  • Baik, Yong-Hyuck;Seo, Young-Hean;Choi, Woong;Lee, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.8
    • /
    • pp.854-860
    • /
    • 1997
  • The tribological property of ceramics is very important for use in seal rings, pump parts, thread guides and mechanical seal, etc. In the present study, which RBSC/graphite composites were manufactured by adding graphite powders with different particle sizes to mixtures of SiC powder, metallic silicon, carbon black and alumina, effects on the tribological property of each RBSC/graphite composite was investigated in accordance with the particle size of the added graphite powder. The water absorption, the bending strength and the resistance for the friction and wear were measured, and the crystalline phase and the microstructure were respectively examined by using XRD and SEM. In case that the particle size of the graphite powder was fine(2${\mu}{\textrm}{m}$), the formation of $\beta$-SiC was accelerated, thereby making the increase of the bending strength and the decrease of the water absorption, but no improvement for the tribological properties. Furthermore, in case that the particle size of the graphite powder was some large(88~149${\mu}{\textrm}{m}$), the formation of $\beta$-SiC was not accelerated, to thereby make the decrease of the bending strength and the increase of the water absorption, but the improvement for the tribological property of only the composite having the graphite powder of 20 vol%. In addition, in case that the particle size distribution of the graphite powder was large (under 53 ${\mu}{\textrm}{m}$), there was no improvement for every properties. However, the composites, which the graphite powder with the particle size of 53~88 ${\mu}{\textrm}{m}$ was added in 10~15 vol%, had the most increased resistance for the friction and wear which show the worn out amount of 0.4~0.6$\times$10-3 $\textrm{cm}^2$, and the value of the bending strength is 380~520 kg/$\textrm{cm}^2$.

  • PDF

Preparation and Properties of Modified Silicon-containing Arylacetylene Resin with Bispropargyl Ether

  • Zhang, Jian;Huang, Jianxiang;Yu, Xiaojiao;Wang, Canfeng;Huang, Farong;Du, Lei
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3706-3710
    • /
    • 2012
  • A novel silicon-containing arylacetylene resin (MSAR) modified by dipropargyl ether of bisphenol A (DPBPA) and dipropargyl ether of perfluorobisphenol A (DPPFBPA) was prepared separately. The curing behaviors of modified resins, DPBPA/MSAR and DPPFBPA/MSAR, were characterized with differential scanning calorimeter (DSC). The kinetic parameters of modified resins were obtained by the Kissinger and Ozawa methods. The results of dynamic mechanical analysis (DMA) revealed that the glass transition temperature ($T_g$) of the cured DPBPA/MSAR reached $486^{\circ}C$. According to the thermogravimetric analysis (TGA), the decomposition temperature ($T_{d5}$) of the cured resins and char yield ($Y_c$, $800^{\circ}C$) decreased as the dipropargyl ether loadings increased, especially in air. With the same weight loading, thermal stability of DPBPA/MSAR was better than that of DPPFBPA/MSAR. The carbon fiber (T300) reinforced composites exhibited excellent flexural properties at room temperature with a high property retention at $300^{\circ}C$.

Poly(phenanthrenequinone)-Poly(acrylic acid) Composite as a Conductive Polymer Binder for Submicrometer-Sized Silicon Negative Electrodes (서브마이크로미터 크기의 실리콘 음극용 폴리페난트렌퀴논-폴리아크릴산 전도성 고분자 복합 바인더)

  • Kim, Sang-Mo;Lee, Byeongil;Lee, Jae Gil;Lee, Jeong Beom;Ryu, Ji Heon;Kim, Hyung-Tae;Kim, Young Gyu;Oh, Seung M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.3
    • /
    • pp.87-94
    • /
    • 2016
  • In order to improve performances of submicrometer-sized Si negative electrode which shows larger volumetric change than nano-sized Si, composite binders are introduced by blending between poly(phenanthrenequinone) (PPQ) conductive polymer binder and poly(acrylic acid) (PAA) having good adhesion strength due to its carboxyl functional group. Blending between PPQ and PAA shows an effect that the adhesion strength of the Si electrode with the composite conductive binder is greatly improved after blending and this makes its better stable cycle performance. Blending ratios between PPQ and PAA in this work are 2:1, 1:1, 1:2 (by weight) and the best capacity retention at 50th cycle is observed in the electrode with the blending ratio 2:1 (named QA21). This is because that PPQ plays a role of conductive carbon among the Si particles or between Si particles and Cu current collector and PAA binds effectively the particles and the current collector. According to this synergetic effect, the internal resistance of the Si electrode with the blending ratio 2:1 is the smallest value. In addition, the Si electrode with PPQ-PAA composite binder shows the better stable cycle performance than the electrode with conventional super-P conductive carbon (20 wt.%).

Studies on the Effects of Variables on the Fabrication Of C/SiC Composite by Chemical Vapor Infiltration in a Fluidized Bed Reactor (유동층반응기에서 화학증기침투에 의한 C/SiC의 복합체 제조시 변수의 영향 연구)

  • Lee, Sung-Joo;Kim, Yung-Jun;Kim, Mi-Hyun;Rim, Byung-O;Chung, Gui-Yung
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.843-847
    • /
    • 1999
  • In this research, C/SiC composites, i.e. activated carbon coated with SiC obtained from dichlorodimethylsilane(DDS) and hydrogen, have been made by chemical vapor infiltration(CVI) in a fluidized bed reactor. Activated carbons of sizes of 4~12, 12~20, and 20~40 mesh were used. After deposition the surface area, the amount and the shape of deposit of each sample were observed at different concentrations of reactant DDS, sizes of activated carbon, reaction pressures and reaction times. The experimental results showed that uniform deposition in the pores of sample was obtained at a lower concentration of DDS and a lower pressure. Additionally, from the observation that the pore diameter and the surface area have minimum values at a certain time of deposition, it was known that deposition occurred inside of the pore at first and then on the outside of particle. Small particles of SiC were deposited uniformly on the surface of activated carbon at lower DDS concentrations and lower reaction pressures. The results were confirmed by SEM, TGA, the pore size distribution analyzer and BET.

  • PDF

Thermodynamic Prediction of TaC CVD Process in TaCl5-C3-H6-H2 System (TaCl5-C3-H6-H2 계에서 TaC CVD 공정의 열역학 해석)

  • Kim, Hyun-Mi;Choi, Kyoon;Shim, Kwang-Bo;Cho, Nam-Choon;Park, Jong-Kyoo
    • Korean Journal of Materials Research
    • /
    • v.28 no.2
    • /
    • pp.75-81
    • /
    • 2018
  • An ultra-high temperature ceramic, tantalum carbide, has received much attention for its favorable characteristics: a superior melting point and chemical compatibility with carbon and other carbides. One drawback is the high temperature erosion of carbon/carbon (C/C) composites. To address this drawback, we deposited TaC on C/C with silicon carbide as an intermediate layer. Prior to the TaC deposition, the $TaCl_5-C_3H_6-H_2$ system was thermodynamically analyzed with FactSage 6.2 and compared with the $TaCl_5-CH_4-H_2$ system. The results confirmed that the $TaCl_5-C_3H_6-H_2$ system had a more realistic cost and deposition efficiency than $TaCl_5-CH_4-H_2$. A dense and uniform TaC layer was successfully deposited under conditions of Ta/C = 0.5, $1200^{\circ}C$ and 100 torr. This study verified that the thermodynamic analysis is appropriate as a guide and prerequisite for carbide deposition.

Effects of Oxygen on Preparation of TiO2 Thin Films by MOCVD (MOCVD법에 의한 TiO2 박막의 제조에 미치는 산소의 영향)

  • Yu, Seong-Uk;Park, Byeong-Ok;Jo, Sang-Hui
    • Korean Journal of Crystallography
    • /
    • v.6 no.2
    • /
    • pp.111-117
    • /
    • 1995
  • TiO2 thin films were prepared on a (100)silicon wafer using a chemical vapor deposition(CVD) method. The deposition experiments were performed using the TTIP in the deposition temperature ransing from 200 content. The deposition rate of TiO2 was increased with the substrate temperature and the oxygen content. The thickness of the deposited thin film and the compositional analysis of this thin films with theoxygen content were measured using Ellipsometry, SEM and ESCA, respectively. The deposited thin film was composed of a bilayer, external TiO2 and internal Ti. Carbon as a residual impurity was found to remain when zero sccm O2 was purged into a reaction chamber and the composition of the deposited thin film was found to change Ti into TiO in a deeper layer. However, when 600sccm O2 was supplied to a reaction chamber, it has been found to reside less carbon content than without O2. Finally, in the condition of 1200sccm O2, no impurity level of carbon was observed and a deeper layer consisted of the Ti composite, even though the deposited surface was composed of TiO2.

  • PDF

Molecular Design of Water-dispersed Polymer Binder with Network Structure for Improved Structural Stability of Si-based Anode (실리콘 기반 음극의 구조적 안전성 향상을 위한 가교 구조를 가지는 수분산 고분자 바인더의 분자 구조 설계)

  • Eun Young Lim;Eunsol Lee;Jin Hong Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.4
    • /
    • pp.309-315
    • /
    • 2024
  • Silicon and carbon composite (SiC) is considered one of the most promising anode materials for the commercialization of Si-based anodes, as it could simultaneously satisfy the high theoretical capacity of Si and the high electronic conductivity of carbon. However, SiC active material undergoes repeated volumetric changes during charge/discharge processes, leading to continuous electrolyte decomposition and capacity fading, which is still considered an issue that needs to be addressed. To solve this issue, we suggest a 4,4'-Methylenebis(cyclohexyl isocyanate) (H12MDI)-based waterborne polyurethane binder (HPUD), which forms a 3D network structure through thermal cross-linking reaction. The cross-linked HPUD (denoted as CHPU) was prepared using an epoxy ring-opening reaction of the cross-linker, triglycidyl isocyanurate (TGIC), via simple thermal treatment during the SiC anode drying process. The SiC anode with the CHPU binder, which exhibited superior mechanical and adhesion properties, not only demonstrated excellent rate and cycling performance but also alleviated the volume expansion of the SiC anode. This work implies that eco-friendly binders with cross-linked structures could be utilized for various Si-based anodes.

SiC powders synthesized from rice husk (왕겨로부터 합성된 탄화규소 분말)

  • Park, Tae-Eon;Hwang, Jun Yeon;Lim, Jin Seong;Yun, Young-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.5
    • /
    • pp.188-192
    • /
    • 2016
  • In this work, the SiC powders were synthesized through the carbonized matter from the mixture of silica powder and rice husks. The SiC powders, obtained from the carbothermal reduction reaction of silica and carbonized rice husks, were investigated by XRD patterns, XPS, FE-SEM and FE-TEM. In the XRD patterns, the specimens showed clearly very high strong peak of (111) plane near $35^{\circ}$ as well as weak (220) and (311) peak respectively at approximately $60^{\circ}$ and $72^{\circ}$. Under Ar atmosphere, the power synthesized from the mixture (in case of mixing ratio, 6 : 4) of carbonized rice husks and silica showed mainly cubic SiC crystalline phase showing relatively lower ratio of hexagonal phase without residual carbon in XRD pattern. In the TEM analysis, the specimen, synthesized from carbonized rice husks and silica with mixing ratio of 6 : 4 under Ar atmosphere, showed relatively fine particles under $5{\mu}m$ and a crystalline SiC phase of (100) diffraction pattern.