• Title/Summary/Keyword: Silicon Wafer Slicing

Search Result 8, Processing Time 0.026 seconds

Online Experts Screening the Worst Slicing Machine to Control Wafer Yield via the Analytic Hierarchy Process

  • Lin, Chin-Tsai;Chang, Che-Wei;Wu, Cheng-Ru;Chen, Huang-Chu
    • International Journal of Quality Innovation
    • /
    • v.7 no.2
    • /
    • pp.141-156
    • /
    • 2006
  • This study describes a novel algorithm for optimizing the quality yield of silicon wafer slicing. 12 inch wafer slicing is the most difficult in terms of semiconductor manufacturing yield. As silicon wafer slicing directly impacts production costs, semiconductor manufacturers are especially concerned with increasing and maintaining the yield, as well as identifying why yields decline. The criteria for establishing the proposed algorithm are derived from a literature review and interviews with a group of experts in semiconductor manufacturing. The modified Delphi method is then adopted to analyze those results. The proposed algorithm also incorporates the analytic hierarchy process (AHP) to determine the weights of evaluation. Additionally, the proposed algorithm can select the evaluation outcomes to identify the worst machine of precision. Finally, results of the exponential weighted moving average (EWMA) control chart demonstrate the feasibility of the proposed AHP-based algorithm in effectively selecting the evaluation outcomes and evaluating the precision of the worst performing machines. So, through collect data (the quality and quantity) to judge the result by AHP, it is the key to help the engineer can find out the manufacturing process yield quickly effectively.

Wire Electric Discharge Machining Process of Various Crystalline Silicon Wafers (다양한 실리콘 웨이퍼 제조를 위한 와이어 전기 방전가공)

  • Moon, Hee-chan;Choi, Sun-ho;Park, Sung-hee;Jang, Bo-yun;Kim, Jun-soo;Han, Moon-hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.5
    • /
    • pp.301-306
    • /
    • 2017
  • Wire electrical discharge machining (WEDM) process was evaluated to slice Silicon (Si) for various applications. Specifically, various Si workpieces with various resistances, such as single and multi crystalline Si bricks and wafers were used. As conventional slicing processes, such as slurry-on or diamond-on wire slicing, are based on mechanical abrasions between Si and abrasive, there is a limitation to decrease the wafer thickness as well as kerf-loss. Especially, when the wafer thickness is less than $150{\mu}m$, wafer breakage increases dramatically during the slicing process. Single crystalline P-type Si bricks and wafers were successively sliced with considerable slicing speed regardless of its growth direction. Also, typical defects, such as microcracks, craters, microholes, and debris, were introduced when Si was sliced by electrical discharge. Also, it was found that defect type is also dependent on resistance of Si. Consequently, this study confirmed the feasibility of slicing single crystalline Si by WEDM.

Measurement of Oxygen by FTIR in Silicon wafer process steps (실리콘 웨이퍼 공정스텝에서 FTIR에 의한 산소의 측정)

  • 김동수;정원채
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.68-71
    • /
    • 2000
  • In this paper, we have measured the oxygen contents by FTIR in silicon wafer various process technology(slicing, lapping, polishing). The measured data are also compared with the data of etching process(KOH, Bright etching). Also we have measured the surface morpology in backside silicon wafer after etching treatment and etch pit density due to OISF after 4 step high temperature annealing process with optical microscope.

  • PDF

The removal of saw marks on diamond wire-sawn single crystalline silicon wafers

  • Lee, Kyoung Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.5
    • /
    • pp.171-174
    • /
    • 2016
  • The diamond wire sawing method to produce silicon wafers for the photovoltaic application is still a new and highly investigated wafering technology. This technology, featured as the higher productivity, lower wear of the wire, and easier recycling of the coolant, is expected to become the mainstream technique for slicing the silicon crystals. However, the saw marks on the wafer surface have to be investigated and improved. This paper discusses the removal of saw marks on diamond wire-sawn single crystalline silicon wafer. With a pretreatment step using tetramethyl ammonium hydroxide ($(CH_3)_4NOH$, TMAH) and conventional texturing process with KOH solution (1 % KOH, 8 % IPA, and DI water), the saw marks on the surface of the diamond wire-sawn silicon wafers can be effectively removed and they are invisible to naked eyes completely.

Implementation of a silicon sludge recycling system for solar cell using multiple centrifuge (다중 원심분리법을 이용한 태양전지용 실리콘 폐 슬러지 재생 시스템 구현)

  • Kim, Ho-Woon;Choi, Byung-Jin
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • This paper explained about the sludge recycling system which retrieved the silicon and abrasive from solar cell wafer slicing. The basic process of the recycling system was multiple centrifuge and secondary processes of ultra sonic agitation, addition of alcohol-water solution and heating sludge was added for raising separation efficiency. The recycling rate was about 96% and 94% for 2N, 4N silicon respectively. The SiC abrasive recycling rate was about 80%. To retrieve the high purity of 4N silicon, the heat process in vacuum furnace was added to remove remaining impurity components.

A Study on Mirror Surface Manufacturing Process for Solar Cell (태양전지용 경면 제조 공정에 대한 연구)

  • 이종권;박지환;송태환;류근걸;이윤배
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.1
    • /
    • pp.47-49
    • /
    • 2003
  • The cost of material and slicing of silicon wafer occupied more than 30% of solar cell manufacturing cost. The substitution of silicon wafer into STS 304 stainless steel could be the promising solution to decrease the material cost. Moreover the stainless steel solar cell could have the advantage of low weight and durability. However, the highly polished surface is required to meet the characteristic of solar cell. The electropolishing process in phosphoric acid based solution was used to get the surface quality. The obtained result was 28 nm obtained in current density of 2Amfi/$cm^2$ at $80^{\circ}C$. The leveller effect of glycerine, ethylene glycol and propylen glycol was studied. When the 0.4 g/l of ethylene glycol was added to the electrolyte, the surface roughness was best, 15 nm.

  • PDF

Fabrication of silicon Voltage Variable Capacitance Diode-II (VVC 다이오드의 시작연구(II))

  • 정만영;박계영
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.7 no.2
    • /
    • pp.33-42
    • /
    • 1970
  • This report is concerned with the fahrication with the falricationof silicon VVC diode by the double diffusion planer technique. At first, some design charts for VVC diode were derived by considering the voltage-capacitance relations, the critical field intensity at the metallurgical junction, and the cut-off frequency of the diode. These charts enables the fabrication engineers to design VVC diode easily without going into the sophisticated design theory. We started with a 2.5 ohm-cm n-type epitaxial silicon wafer. The phosphorous was diffused by POCl3 impurity source. Then boron diffusion followed make hyperabrupt p-n junction by BN source. The maximum to minimum capacitance ratio of the diode as a tuning diode for a TV tuner made in these experiments was 4:1. Measured electrical characteristics of the sample diodes showed in good agreement with the theoretical expectations. Slicing and polishing technique of the silicon wafer and diffusion technique of the impurity atoms, which were employed in our study, are also stated briefly in this report.

  • PDF

Application of Solvent Extraction to the Treatment of Industrial Wastes

  • Shibata, Junji;Yamamoto, Hideki
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.259-263
    • /
    • 2001
  • There are several steps such as slicing, lapping, chemical etching and mechanical polishing in the silicon wafer production process. The chemical etching step is necessary to remove damaged layer caused In the slicing and lapping steps. The typical etching liquor is the acid mixture comprising nitric acid, acetic acid and hydrofluoric acid. At present, the waste acid is treated by a neutralization method with a high alkali cost and balky solid residue. A solvent extraction method is applicable to separate and recover each acid. Acetic acid is first separated from the waste liquor using 2-ethlyhexyl alcohols as an extractant. Then, nitric acid is recovered using TBP(Tri-butyl phosphate) as an extractant. Finally hydrofluoric acid is separated with the TBP solvent extraction. The expected recovered acids in this process are 2㏖/l acetic acid, 6㏖/1 nitric acid and 6㏖/l hydrofluoric acid. The yields of this process are almost 100% for acetic acid and nitric acid. On the other hand, it is important to recover and reuse the metal values contained in various industrial wastes in a viewpoint of environmental preservation. Most of industrial products are made through the processes to separate impurities in raw materials, solid and liquid wastes being necessarily discharged as industrial wastes. Chemical methods such as solvent extraction, ion exchange and membrane, and physical methods such as heavy media separation, magnetic separation and electrostatic separation are considered as the methods for separation and recovery of the metal values from the wastes. Some examples of the application of solvent extraction to the treatment of wastes such as Ni-Co alloy scrap, Sm-Co alloy scrap, fly ash and flue dust, and liquid wastes such as plating solution, the rinse solution, etching solution and pickling solution are introduced.

  • PDF