• 제목/요약/키워드: Silicon Nitride Ceramic

검색결과 205건 처리시간 0.022초

세라믹 인서트를 이용한 단조 금형설계 (Forging Die Design using Ceramic Insert)

  • 권혁홍
    • 한국생산제조학회지
    • /
    • 제9권3호
    • /
    • pp.9-17
    • /
    • 2000
  • The use of ceramic inserts in steel forging tools offers significant technical and economic advantages over other materi-als of manufacture. These potential benefits can however only be realised by optimal design of the tools so that the ceramic insert are not subjected to stresses that led to their premature failure. In this paper the data on loading of the tools is determined from a commercial forging simulation package as the contact stress distribution on the die-workpiece interface and as temperature distributions in the die. This data can be processed as load input data for a finite-element die-stress analysis. Process simulation and stress analysis are thus combined during the design and a data exchange program has been developed that enables optimal design of the dies taking into account the elastic detections generated in shrink fitting the die inserts and that caused by the stresses generated in the forging process. The stress analysis of the dies is used to determine the stress conditions on the ceramic insert by considering contact and interference effects under both mechanical and thermal loads. Simulation results have been validated as a result of experimental investigation. Laboratory tests on ceramic insert dies have verified the superior performance of the Zirconia and Silicon Nitride ceramic insert in order to prolong maintenance life.

  • PDF

일정 질소압에서 제조된 반응결합 질화규소에 관한 연구 (The Study of Reaction Bonded Silicon Nitride Fabricated Under Static Nitrogen Pressure)

  • 최명제;노태욱;박찬;박동수;김해두
    • 한국세라믹학회지
    • /
    • 제37권5호
    • /
    • pp.505-510
    • /
    • 2000
  • In this investigation, we fabricated RBSN (Reaction Bonded Silicon Nitride) using the static nitriding system which could be advantageous for commercialization. Firstly, Si compacts of different sizes were made, and then nitridation rates were investigated as a function of added static gas pressure. The reaction schedule was obtained by pre-experiments. In case of small samples, the variation of ${\alpha}$, ${\beta}$ phases between the inside and the outside region of the specimens was examined after the samples were nitrided under 1 bar and 1.5 bar reaction pressure. On the other hand, large samples of Si compact with the size of 36 mm for diameter and 23 mm for thickness were nitrided for 26 hours of the total nitridation time, which showed a complete and homogeneous nitriding reaction from the outside to the inside of the samples, although the time was considerably shorter than that needed for convertional nitridation. Nitridation rates obtained at the early stage of reaction were proportional to the reaction gas pressures. The sequences of the nitridation reaction with the thickness were as follows 1) the outside, 2) the inside and 3) the intermediate area of the specimen. These results wer eobtained from the coloration of cross sectioned specimens that had various nitridation rates. Total nitriding reaction kinetics was controlled by chemical reaction, not by diffusion of the nitrogen gas.

  • PDF

Development of CNT-dispersed Si3N4 Ceramics by Adding Lower Temperature Sintering Aids

  • Matsuoka, Mitsuaki;Yoshio, Sara;Tatami, Junichi;Wakihara, Toru;Komeya, Katsutoshi;Meguro, Takeshi
    • 한국세라믹학회지
    • /
    • 제49권4호
    • /
    • pp.333-336
    • /
    • 2012
  • The study to give electrical conductivity by dispersing carbon nanotubes (CNT) into silicon nitride ($Si_3N_4$) ceramics has been carried out in recent years. However, the density and the strength of $Si_3N_4$ ceramics were degraded and CNTs disappeared after firing at high temperatures because CNTs prevent $Si_3N_4$ from densification and there is a possibility that CNTs react with $Si_3N_4$ or $SiO_2$. In order to suppress the reaction and the disappearance of CNTs, lower temperature densification is needed. In this study, $HfO_2$ and $TiO_2$ was added to $Si_3N_4-Y_2O_3-Al_2O_3$-AlN system to fabricate CNT-dispersed $Si_3N_4$ ceramics at lower temperatures. $HfO_2$ promotes the densification of $Si_3N_4$ and prevents CNT from disappearance. As a result, the sample by adding $HfO_2$ and $TiO_2$ fired at lower temperatures showed higher electrical conductivity and higher bending strength. It was also shown that the mechanical and electrical properties depended on the quantity of the added CNTs.

질화규소 세라믹의 레이저 예열선삭에 관한 연구 (III) - SSN 및 HIPSN의 예열선삭시 절삭력 및 공구수명의 특성 - (A Study on Laser Assisted Machining for Silicon Nitride Ceramics (III) - Variation of the Main Cutting Force and Life of Cutting Tool by LAM of SSN and HIPSN -)

  • 김종도;이수진;강태영;서정;이제훈
    • Journal of Welding and Joining
    • /
    • 제28권6호
    • /
    • pp.35-39
    • /
    • 2010
  • Generally, ceramic material is very difficult to machine due to high strength and hardness. However, ceramic material can be machined at high temperature by plastic flow as metallic material due to the deterioration of the grain boundary glassy phase. Recently, a new method was developed to execute cutting process with CBN cutting tool by local heating of surface with laser. There are various parameters in LAM because it is a complex process with laser treatment and machining. During laser assisted machining, high power results in reducing of cutting force and increasing tool life, but excessive power brings oxidation of the surface. The effect of laser power, feed rate, cutting depth and etc. were investigated on the life of cutting tool. Chips were observed to find out suitable machining conditions. Chips of SSN had more flow-types than HIPSN. It means SSN is easier to machining. The life of cutting tool was increased with increasing laser power and decreasing feed rate and cutting depth.

NANO-SIZED COMPOSITE MATERIALS WITH HIGH PERFORMANCE

  • Niihara, N.;Choa, H.Y.;Sekino, T.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 1996년도 추계학술강연 및 발표대회 강연 및 발표논문 초록집
    • /
    • pp.6-6
    • /
    • 1996
  • Ceramic based nanocomposite, in which nano-sized ceramics and metals were dispersed within matrix grains and/or at grain boundaries, were successfully fabricated in the ceramic/cerarnic and ceramic/metal composite systems such as $Al_2O_3$/SiC, $Al_2O_3$/$Si_3N_4$, MgO/SiC, mullite/SiC, $Si_3N_4/SiC, $Si_3N_4$/B, $Al_2O_3$/W, $Al_2O_3$/Mo, $Al_2O_3$/Ni and $ZrO_2$/Mo systems. In these systems, the ceramiclceramic composites were fabricated from homogeneously mixed powders, powders with thin coatings of the second phases and amorphous precursor composite powders by usual powder metallurgical methods. The ceramiclmetal nanocomposites were prepared by combination of H2 reduction of metal oxides in the early stage of sinterings and usual powder metallurgical processes. The transmission electron microscopic observation for the $Al_2O_3$/SiC nanocomposite indicated that the second phases less than 70nm were mainly located within matrix grains and the larger particles were dispersed at the grain boundaries. The similar observation was also identified for other cerarnic/ceramic and ceramiclmetal nanocornposites. The striking findings in these nanocomposites were that mechanical properties were significantly improved by the nano-sized dispersion from 5 to 10 vol% even at high temperatures. For example, the improvement in hcture strength by 2 to 5 times and in creep resistance by 2 to 4 orders was observed not only for the ceramidceramic nanocomposites but also for the ceramiclmetal nanocomposites with only 5~01%se cond phase. The newly developed silicon nitride/boron nitride nanocomposites, in which nano-sized hexagonal BN particulates with low Young's modulus and fracture strength were dispersed mainly within matrix grains, gave also the strong improvement in fracture strength and thermal shock fracture resistance. In presentation, the process-rnicro/nanostructure-properties relationship will be presented in detail. The special emphasis will be placed on the understanding of the roles of nano-sized dispersions on mechanical properties.

  • PDF

전기화학 공정을 이용한 질화규소 기판 상의 금속 전극 형성에 관한 연구 (Formation of Metal Electrode on Si3N4 Substrate by Electrochemical Technique)

  • 신성철;김지원;권세훈;임재홍
    • 한국표면공학회지
    • /
    • 제49권6호
    • /
    • pp.530-538
    • /
    • 2016
  • There is a close relationship between the performance and the heat generation of the electronic device. Heat generation causes a significant degradation of the durability and/or efficiency of the device. It is necessary to have an effective method to release the generated heat. Based on demands of the printed circuit board (PCB) manufacturing, it is necessary to develop a robust and reliable plating technique for substrates with high thermal conductivity, such as alumina ($Al_2O_3$), aluminium nitride (AlN), and silicon nitride ($Si_3N_4$). In this study, the plating of metal layers on an insulating silicon nitride ($Si_3N_4$) ceramic substrate was developed. We formed a Pd-$TiO_2$ adhesion layer and used APTES(3-Aminopropyltriethoxysilane) to form OH groups on the surface and adhere the metal layer on the insulating $Si_3N_4$ substrate. We used an electroless Ni plating without sensitization/activation process, as Pd particles were nucleated on the $TiO_2$ layer. The electrical resistivity of Ni and Cu layers is $7.27{\times}10^{-5}$ and $1.32{\times}10^{-6}ohm-cm$ by 4 point prober, respectively. The adhesion strength is 2.506 N by scratch test.

$\beta$-$Si_3$$N_4$종자입자 첨가 SiC-$Si_3$$N_4$복합재료의 기계적 특성 (Mechanical Properties of SiC-$Si_3$$N_4$Composites Containing $\beta$-$Si_3$$N_4$Seeds)

  • 이영일;김영욱;최헌진;이준근
    • 한국세라믹학회지
    • /
    • 제38권1호
    • /
    • pp.22-27
    • /
    • 2001
  • $\beta$-Si$_3$N$_4$종자입자 첨가가 소결조제로 Y-Mg-Si-Al-O-N계 oxynitride glass를 사용하여 일축가압 소결을 행한 SiC-Si$_3$N$_4$복합재료의 미세구조와 기계적 특성에 미치는 영향을 고찰하였다. 길게 자란 $\beta$-Si$_3$N$_4$입자들과 등방성의 $\beta$-SiC 입자들이 균일하게 분포된 미세구조를 얻었다. $\beta$-Si$_3$N$_4$종자입자 함량이 증가함에 따라 SiC-Si$_3$N$_4$복합재료의 강도와 파괴인성이 증가하였고, 이는 복합화에 기인하는 결함크기의 감소와 길게 자란 $\beta$-Si$_3$N$_4$입자에 의한 균열가교 및 균열회절 등에 기인하였다. SiC-70 wt% Si$_3$N$_4$복합재료의 대표적인 강도와 파괴인성은 각각 770 MPa과 6.2 MPa.m$^{1}$2/ 이었다.

  • PDF

미세구조 제어에 의해 제조한 자체 강인화 질화규소 세라믹의 기계적 성질과 미세조직 (Mechanical Properties and Microstructures of Self-toughened Silicon Nitride Cermic Prepared by Microstructural Control)

  • 김완중;이영규;조원승;최상욱
    • 한국세라믹학회지
    • /
    • 제36권4호
    • /
    • pp.432-443
    • /
    • 1999
  • The self-toughened Si3N4 ceramics where needle-like coarse ${\beta}$-Si3N4 grains were dispersed within fine-grain-ed matrix were prepared via hot-prssing at 1730$^{\circ}C$ for 2 h using 5 vol% ${\beta}$-Si3N4 whiskers as a seed. In this study the microstructures and mechanical properties of self-toughened Si3N4 ceramics were investigated. The flexural strength of self-toughened Si3N4 ceramics was increased from 600-800 MPa of the Si3N4 monolith to 830-1025 MPa. The KIC was also increased from 4.0-5.0MPa$.$m1/2 of the Si3N4 monolith to 5.8-6.5MPa$.$m1/2$.$The needle-like coarse Si3N4 grains in self-toughened ceramics were considered to induce various toughening mechanisms including the crack deflection pull-out and bridging and to contribute to KIC improvement. In ad-dition to toughening mechanisms the KIC improvement was considered to be partially indebted also to the orien-tation of large ${\beta}$-Si3N4 grains and to the promoting effect of ${\beta}$-Si3N4 whiskers on the ${\alpha}$ to ${\beta}$ transtion.

  • PDF

출발 Si 분말의 입자크기에 따른 Sintered RBSN의 기계적특성 변화 (Effect of Raw-Si Particle Size on the Mechanical Properties of Sintered RBSN)

  • 이주신;문지훈;한병동;박동수;김해두
    • 한국세라믹학회지
    • /
    • 제38권8호
    • /
    • pp.740-748
    • /
    • 2001
  • 출발원료 Si 분말의 입자크기를 다양하게 하여 질화반응 및 가스압 소결시 입자크기에 따른 산소함량의 차이에서 나타나는 상변화와 그로 인한 치밀화 거동, 미세구조 발달 및 기계적 특성에 대하여 고찰하였다. 145$0^{\circ}C$의 질화반응에서는 조대분말을 사용한 경우가 미세분말을 사용한 경우보다 높은 질화율을 나타냈으며, 각 분말크기에 따른 native oxide의 함량차에 따라 각기 다른 2차 결정상들이 검출되었다. 조대분말을 사용한 경우에는 제 2상의 석출로 인한 액상량의 부족으로 고온의 소결온도에서도 치밀화를 이루지 못해 낮은 강도값을 나타내었다. 한편, 미세분말을 사용한 경우에는 질화반응 후 석출된 제 2상이 소결온도가 증가함에 따라 용융되면서 치밀화를 이루어 높은 강도값을 나타내었다. 높은 강도값은 미세분말을 사용한 시편들에서 얻어졌으나 높은 파괴인성값은 상대적으로 큰 분말을 사용한 시편들에서 얻어졌는데, 이는 미세한 입자들로 구성된 기지상 내에 잘 발달된 주상정 입자들을 갖는 미세구조에 기인된 것으로 사료된다.

  • PDF

질화규소 이층 층상재료에서 코팅층의 파괴에 관한 연구 : I. Elastic/Plastic Mismatch의 영향 (A Study on the Coating Fracture in Silicon Nitride Bilayer : I. Effect of Elastic/Plastic Mismatch)

  • 이기성;이승건;김도경
    • 한국세라믹학회지
    • /
    • 제34권12호
    • /
    • pp.1268-1274
    • /
    • 1997
  • Effect of elastic/plastic mismatch on the fracture of Si3N4 coating in Si3N4/Si3N4 -BN bilayer was investigated by Hertzian indentation testing. A different amount of mismatch between two layers was induced by different BN addition in the substrate layer, and Hertizian cracks were induced by using WC ball indenter. As a result, as the elastic/plastic mismatch between coating and substrate layer increased, the coating fracture easily occurred. A bending stress induced by different elastic/plastic mismatch was main reason to cause the fracture of coating.

  • PDF