• 제목/요약/키워드: Silicon Nitride Ceramic

검색결과 205건 처리시간 0.023초

Anisortopy of the Silicon Nitride Prepared by Tape Casting

  • Park, Dong-Soo;Kim, Changd-Won;Park, Chan
    • The Korean Journal of Ceramics
    • /
    • 제5권2호
    • /
    • pp.119-124
    • /
    • 1999
  • Silicon nitride ceramics with highly oriented microstructure were prepared by tape casting a slurry containing 5 wt% of the silicon nitride whiskers. The whiskers were aligned in the casting direction and worked as seeds for the grain growth. The anisotropy was observed from the sintering shrinkage, Vickers indentation crack lengths, and XRD patterns. The cracks were much longer on the surface normal to the aligned grains than on the tape casting surface where the lateral cracks were also observed. The effect of sintering additives and the annealing treatment on the indentation crack length was examined. The sample with higher silica content had longer cracks than the one with lower silica content. The crack length anisotropy increased after annealing at 2123K.

  • PDF

직응집성형법을 이용한 질화규소의 실형상 성형공정 및 성형특성 (Near-Net-Shape Forming and Green Properties of Silicon Nitride by Direct Coagulation Casting Technique)

  • 정윤성;;정연길;백운규
    • 한국세라믹학회지
    • /
    • 제39권3호
    • /
    • pp.299-307
    • /
    • 2002
  • 본 연구에서는 복잡 형상의 세라믹체를 효율적으로 성형할 수 있어 새로운 성형기법으로 부각되고 있는 직응집성형(Direct Coagulation Casing, DCC)공정기술에 관하여 콜로이드 계면화학을 이용하여 연구하였다. 높은 고형분량을 가지는 안정된 질화규소 슬립을 제조하기 위하여 분산제, 소결조제 그리고 응집제 각각이 다양한 공정변수에 미치는 영향에 대하여 평가하였다. 1.0 wt% Tetraethylammonium Hydroxide(TEAH)를 첨가하여 염기영역에서 소결조제를 포함한 안정된 51vol%의 질화규소 슬립을 제조할 수 있었다. 질화규소 슬립은 첨가된 $Al(CH_3COO)_2OH$의 온도증가에 따른 열분해를 이용하여 직응집성 유도하였다. 염기영역에서 $Al^{3+}$ 이온들이 aluminum hydroxide$(Al(OH)_3)$ 석출되면서 슬립내 $OH^-$ 농도를 감소시켜 질화규소 슬립을 직응집시켰다.

Dispersant-Binder Interactions in Aqueous Silicon Nitride Suspensions

  • Paik, Ungyu
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1996년도 제11차 KACG 학술발표회 Crystalline Particle Symposium (CPS)
    • /
    • pp.129-153
    • /
    • 1996
  • In aqueous slurry processing of silicon nitride, the interaction of dispersant and binder on the surface of particles was studied to identify the effect of these additives on ceramic powder processing. Polymethacrylic acid (PMAA) and polyvinyl alcohol (PVA) were used as dispersant and binder, respectively. the adsorption isotherms of PMAA and PVA for the silicon nitride suspension were determined, while the adsorption of PMAA was differentiated in the mixed additive system by ultraviolet spectroscopy. These experiments were done in order to investigate the effect of these organic additives on the physicochemical properties of silicon nitride suspensions. The electrokinetic behavior of silicon nitride was subsequently measured by electrokinetic sonic amplitude (ESA). As PMAA adsorbed onto silicon nitride, the isoelectric point (pHicp) shifted from pH=6.7 to acidic pH, depending on the surface coverage of PMAA. However, adsorption of PVA did not change the pHicp of suspensions, but did decrease the surface potential of silicon nitride moderately. The rheological behavior of silicon nitride suspensions was measured to assess the stability of particles in aqueous media, and was correlated with the electrokinetic behavior and adsorption isotherm data for silicon nitride.

  • PDF

Silicon Nitride Composites with Different Nanocarbon Additives

  • Balazsi, Csaba
    • 한국세라믹학회지
    • /
    • 제49권4호
    • /
    • pp.352-362
    • /
    • 2012
  • This paper explores the use of a variety of carbon nanoparticles to impart electrical, thermal conductivity, good frictional properties to silicon nitride matrices. We used the highly promising types of carbon as carbon nanotubes, exfoliated graphene and carbon black nanograins. A high-efficiency attritor mill has also been used for proper dispersion of second phases in the matrix. The sintered silicon nitride composites retained the mechanical robustness of the original systems. Bending strength as high as 700 MPa was maintained and an electrical conductivity of 10 S/m was achieved in the case of 3 wt% multiwall carbon nanotube addition. Electrically conductive silicon nitride ceramics were realized by using carbon nanophases. Examples of these systems, methods of fabrication, electrical percolation, mechanical, thermal and tribological properties are discussed.

R-Curve Behavior of Silicon Nitride at Elevated Temperatures

  • Sakaguchi, Shuji
    • The Korean Journal of Ceramics
    • /
    • 제4권4호
    • /
    • pp.331-335
    • /
    • 1998
  • R-curve, of three kinds of silicon nitride-based ceramics were measured, using single edge notched beam (SENB) method at room and at elevated temperatures, up to $1200^{\circ}C$. Stable fraacture was seen on ceramic materials with SENB specimens if the machined notch is deep enough, even though the crack resistance did not increase with crack length. Hot pressed silicon nitride did not show the rising R-curve behavior at room temperature, but it showed some rising at $1000^{\circ}C$ and above. Si3N4 reinforced with SiC whiskers showed no rising behavior at room and elevated temperatures, as it has smaller grain size, compare to the monolithic specimen. Gas pressure sintered silicon nitride had very large and elongated grains, and it showed rising R-curve even at room temperature. However, it showed some creep behavior at $1200^{\circ}C$ and the calculated R-curve on this condition did not show a good result. We cannot apply this technique on this condition for obtaining the R-curve.

  • PDF

High Toughness Silicon Nitride Material in Machining of Compacted Graphite Iron

  • Park, Kwon-Hee;Lee, Kern-Woo;Lee, Joo-Wan;Sharon, Moshe
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.861-862
    • /
    • 2006
  • The suitable tools for CGI material has not been developed yet because of high hardness, high toughness and very low machininability compared to the grey cast iron. And the tool life has been decreased as the contents of Ti in CGI material. From this research, we were able to do the high speed machining by using high toughness silicon nitride ceramic tools. The silicon nitride ceramic tool grade was specially designed and prepared with microstructure of elongated grains with higher aspect ratio (c/a) than conventional one.

  • PDF

Si-N 코팅막의 기계적 물성 및 구조 분석 (Characterization of Silicon Nitride Coating Films)

  • 고철호;김봉섭;윤존도;김광호
    • 한국세라믹학회지
    • /
    • 제42권5호
    • /
    • pp.359-365
    • /
    • 2005
  • Silicon nitride coating films with various ratios of nitrogen to silicon contents were prepared and characterized. The film was coated on silicon substrate by sputtering method with changing nitrogen gas flow rate in a chamber. The nitrogen to silicon ratio was found to have values in a range from 0 to 1.4. Coated film was characterized with scanning electron microscopy, transmission electron microscopy, electron probe microanalysis, nanoindentation scanning probe microscopy, x-ray photon spectrometry, and Raman spectrometry. Silicon nitride phase in all samples showed amorphous nature regardless of N/Si ratio. When N/Si ratio was 1.25, hardness and elastic modulus of silicon nitride film showed maximum with 22 GPa and 210 GPa, respectively. Those values decreased, when N/Si ratio was higher than 1.25. Raman spectrum showed that no silicon phase exist in the film. XPS result showed that the silicon-nitrogen bond was dominant way for atomic bonding in the film. The structure and property was explained with Random Bonding Model(RBM) which was consistent with the microstructure and chemistry analysis for the coating films.

Industrial Applications of Si-based Ceramics

  • Eichler, Jens
    • 한국세라믹학회지
    • /
    • 제49권6호
    • /
    • pp.561-565
    • /
    • 2012
  • Due to their unique combination of properties, Si-based ceramics, such as silicon carbide (SiC), silicon nitride ($Si_3N_4$) and silicon oxide ($SiO_2$ as fused silica), have a range of industrial applications in fields such as the chemical industry, aluminum manufacturing, oil and gas production and solar cell production. For each materials group, examples of typical applications from various industry sectors are presented while taking into account the property fingerprint.