Browse > Article
http://dx.doi.org/10.4191/kcers.2012.49.4.352

Silicon Nitride Composites with Different Nanocarbon Additives  

Balazsi, Csaba (Ceramics and Nanocomposites Department, Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences)
Publication Information
Abstract
This paper explores the use of a variety of carbon nanoparticles to impart electrical, thermal conductivity, good frictional properties to silicon nitride matrices. We used the highly promising types of carbon as carbon nanotubes, exfoliated graphene and carbon black nanograins. A high-efficiency attritor mill has also been used for proper dispersion of second phases in the matrix. The sintered silicon nitride composites retained the mechanical robustness of the original systems. Bending strength as high as 700 MPa was maintained and an electrical conductivity of 10 S/m was achieved in the case of 3 wt% multiwall carbon nanotube addition. Electrically conductive silicon nitride ceramics were realized by using carbon nanophases. Examples of these systems, methods of fabrication, electrical percolation, mechanical, thermal and tribological properties are discussed.
Keywords
Silicon nitride; Carbon nanotubes; Graphene; Carbon black; Milling;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z. Shen, Z. Zhao, H. Peng, and M. Nygren, "Formation of Tough Interlocking Microstructures in Silicon Nitride Ceramics by Dynamic Ripening," Nature, 417 266-9 (2002).   DOI
2 D. P. Thompson, "Materials Science: Cooking up Tougher Ceramics," Nature, 417 237 (2002).   DOI
3 S. Bhaduri and S. B. Bhaduri, "Recent Developments in Ceramic Nanocomposites," JOM, January, 44-50 (1998)
4 M. Sternitzke, "Structural Ceramic Nanocomposites," J. Eur. Ceram. Soc., 17 1061-82 (1997).   DOI
5 B. Djuricic,W. Lacom, G. Krumpel, and M. Brabetz, Nano-Science, It's time 02/02, 1-8.
6 C. G. Papakonstantinou, P. Balaguru, and R. E. Lyon, "Comparative Study of High Temperature Composites," Composites: Part B, 32 637 (2001).   DOI
7 A.K. Geim and K.S. Novoselov, "The Rise of Graphene," Nat. Mater., 6 183-91 (2007).   DOI   ScienceOn
8 M. Segal, "Selling Graphene by the Ton," Nat. Nanotechnol., 4 612-4 (2009).   DOI   ScienceOn
9 A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau:, "Superior Thermal Conductivity of Single-layer Graphene," Nano Lett., 8 902-7 (2008).   DOI   ScienceOn
10 C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, and A. Govindaraj:, "Graphene: the New Two-dimensional Nanomaterial," Angew. Chem. Int. Ed., 48 [42] 7752-77 (2009).   DOI
11 C. Soldano, A. Mahmood, and E. Dujardin:, "Production Properties and Potential of Graphene," Carbon, 48 2127-50 (2010).   DOI
12 T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prud'Homme, and L.C. Brinson:, "Functionalized Graphene Sheets for Polymer Nanocomposites," Nat. Nanotechnol., 3 327-31 (2008).   DOI
13 Y. Fan, L. Wang, J. Lib, J. Lia, S. Sun, F. Chen, L. Chen, and W. Jiang, "Preparation and Electrical Properties of Graphene Nanosheet/$Al_2O_3$ Composites," Carbon, 48 1743-9 (2010).   DOI   ScienceOn
14 A. Peigney, Ch. Laurent, E. Flahaut, and A. Rousset:, "Carbon Nanotubes in Novel Ceramic Matrix Nanocomposites," Ceram. Int., 26 [6] 667-83 (2000).
15 R.Z. Ma, J. Wu, B.Q. Wei, J. Liang, and D.H. Wu, "Processing and Properties of Carbon Nanotubes-nano-SiC ceramic," J. Mater. Sci., 33 [21] 5243-6 (1998).   DOI   ScienceOn
16 C. Balazsi, B. Fenyi, N. Hegman, Z. Kover, F. Weber, Z. Vertesy, Z. Konya, I. Kiricsi, L.P. Biro, and P. Arato, "Development of CNT/$Si_3N_4$ Composites with Improved Mechanical and Electrical Properties," Composites: Part B, 37 418-24 (2006).   DOI   ScienceOn
17 G. Yamamoto, M. Omori, T. Hashida, and H. Kimura, "A Novel Structure for Carbon Nanotube Reinforced Alumina Composites with Improved Mechanical Properties," Nanotechnology, 19 1-7 (2008).
18 S. Pasupuleti, R. Peddetti, S. Santhanam, K.P. Jen, N.Z. Wing, M. Hecht, and P.J. Halloran, "Toughening Behavior in a Carbon Nanotube Reinforced Silicon Nitride Composite," Mater. Sci. Eng., A491 224-9 (2008).
19 G.D. Zhan, J.D. Kuntz, J. Wan, and A.K. Mukherjee, Nat. Mater., 61 [2] 38-42 (2003).
20 Z. Xia, L. Riester, W.A. Curtin, H. Li, B.W. Sheldon, J. Liang, B. Chang, and J.M. Xu, "Direct Observation of Toughening Mechanisms in Carbon Nanotube Ceramic Matrix Composites," Acta Mater., 52 931-44 (2004).   DOI
21 I. Ahmad, A. Kennedy, and Y.Q. Zhu, "Carbon Nanotubes Toughened Aluminium Oxide Nanocomposites," J. Eur. Ceram. Soc., 30 865-73 (2010).   DOI
22 X. Wang, N.P. Padture, and H. Tanaka:, "Contact-damage-resistant Ceramic/Single-wall Carbon Nanotubes and Ceramic/Graphite Composites," Nat. Mater., 3 539-44 (2004).   DOI
23 J. Dusza, G. Blugan, J. Morgiel, J. Kuebler, F. Inam, T. Peijs, et al., "Hot Pressed and Spark Plasma Sintered Zirconia/carbon Nanofiber Composites," J. Eur. Ceram. Soc., 29 [15] 3177-84 (2009).   DOI
24 J. Gonzalez-Julian, Y. Iglesias, A.C. Caballero, M. Belmonte, L. Garzon, C. Ocal, P. Miranzo, and M.I. Osendi, "Multi-scale Electrical Response of Silicon Nitride/multiwalled Carbon Nanotubes Composites," Comp. Sci. Technol., 71 [1] 60-6 (2011).   DOI
25 S. Yoshio, J. Tatami, T. Wakihara, T. Yamakawa, H. Nakano, K. Komeya, and T. Meguro, "Effect of CNT Quantity and Sintering Temperature on Electrical and Mechanical Properties of CNT-dispersed $Si_3N_4$ Ceramics," J. Ceram. Soc. Jpn., 119 70-5 (2011).   DOI
26 R. Poyato, A.L. Vasiliev, N.P. Padture, H. Tanaka, and T. Nishimura, "Aqueous Colloidal Processing of Single-Wall Carbon Nanotubes and their Composites with Ceramics," Nanotechnology, 17 1770-7 (2006).   DOI
27 J. Tatami, T. Katashima, K. Komeya, T. Meguro, and T. Wakihara, "Electrically Conductive CNT-Dispersed Silicon Nitride Ceramics," J. Am. Ceram. Soc., 88 2889-93 (2005).   DOI
28 E.L. Corral, H. Wang, J. Garay, Z. Munir, and E.V. Barrera, "Effect of Single-walled Carbon Nanotubes on Thermal And Electrical Properties of Silicon Nitride Processed Using Spark Plasma Sintering," J. Eur. Ceram. Soc., 31 [3] 391-400 (2011).   DOI
29 P. Hvizdos, A. Duszova, V. Puchy, O. Tapaszto, P. Kun, and Cs. Balazsi:, "Wear Behavior of $ZrO_2$-CNF and $Si_3N_4$-CNT Nanocomposites," Key Eng. Mater., 465 495-8 (2011).   DOI
30 E.L. Corral, L. Cesarano, A. Shyam, E. Lara-Curzio, N. Bell, J. Stuecker, N. Perry, M. Di Prima, Z. Munir, J. Garay, and E.V. Barrera:, "Engineered Nanostructures for Multifunctional Single-walled Carbon Nanotube Reinforced Silicon Nitride Nanocomposites," J. Am. Ceram. Soc., 91 3129-37 (2008).   DOI
31 Cs. Balazsi, Z. Konya, F. Weber, L. P. Biro, and P. Arato, "Preparation and Characterization of Carbon Nanotube Reinforced Silicon Nitride Composites," Mat. Sci. Eng., C23 [6-8] 1133 (2003).
32 C. Knieke, A. Berger, M. Voigt, R.N. Klupp Taylor, J. Rohrl, and W. Peukert, "Scalable Production of Graphene Sheets by Mechanical Delamination," Carbon, 48 3196-204 (2010).   DOI
33 C. Balazsi, E. Dolekcekic, Z. Kover et al., "Comparison of Silicon Nitrides with Carbon Additions Prepared by Two Different Sintering Methods," Key Eng. Mat., 290 242-5 (2005).   DOI
34 O. Koszor, F. Weber, Z. Vertesy, and Z. E. Horvath et al., "Preparation of $Si_3N_4$ Composites with Single wall Carbon Nanotube and Exfoliated Graphite," Mater. Sci. Forum, 589 409-14 (2008).   DOI
35 C. Balazsi, et al., "Application of Carbon Nanotubes to Silicon Nitride Matrix Reinforcements," Curr. Appl. Phys., 6 124-30 (2006).   DOI
36 O. Koszor, L. Tapaszto, M. Marko, and Cs. Balazsi, "Characterizing the Global Dispersion of Carbon Nanotubes in Ceramic Matrix Nanocomposites," App. Phys. Lett., 93 [20] 201910 (2008).   DOI
37 Cs. Balazsi, Z. Konya, Zs. Kasztovszky, F. Weber, Z. Vertesy, L. P. Biro, I. Kiricsi, and P. Arato, Examination of carbon nanotube reinforced silicon nitride composites, Proceedings of Fifth International Conference on High Temperature Ceramic Matrix Composites (HTCMC-5) New Frontiers and Horizons, p. 107-12, published by The American Ceramic Society, Seattle, Washington, USA, 2004.
38 P. Kun, O. Tapaszto, F. Weber, and C. Balazsi, Ceramics International, 38 211-6 (2012).   DOI
39 J. Lu, I. Do, H. Fukushima, I. Lee, and L.T. Drzal, "Stable Aqueous Suspension and Self-assembly of Graphite Nanoplatelets Coated with Various Polyelectrolytes," J. Nanomater., 186486 1-11 (2010).
40 http://www.xgsciences.com
41 http://angstronmaterials.com
42 J.M. Brown, et al., "Hierarchical Morphology of Carbon single-walled Nanotubes During Sonication in an Alphiatic diamine," Polymer, 46 10854 (2005).   DOI
43 O. Tapaszto et al., "Dispersion Patterns of Graphene and Carbon Nanotubes in Ceramic Matrix Composites," Chem. Phys. Lett., 511 340-3 (2011).   DOI
44 C. Ramirez, L.Garzon, P.Miranzo, M.I.Osendi, and C. Ocal, "Electrical Conductivity Maps in Graphene Nanoplatelet/ silicon Nitride Composites Using Conducting Scanning Force Microscopy," Carbon, 49 3873 (2011).   DOI
45 D.W. Schaefer, and R.S. Justice, "How Nano are Nanocomposites," Macromolecules, 40 8501-17 (2007).   DOI
46 B. Fenyi, O. Koszor, and Cs. Balazsi, "Ceramic Based Nanocomposites for Functional Applications," NANO, 3 [5] 323-8 (2008).   DOI
47 L.S.Walker, V.R.Marotto, M.A.Rafiee, N.Koratkar, and E.L.Corral, "Toughening in Graphene Ceramic Composites," ACS Nano, 5 [4] 3182-90 (2011).   DOI
48 O. Maleka, J. Gonzalez-Julian, J. Vleugels, W. Vanderauwera, B. Lauwers, and M. Belmonte, Materials Today, 14 [10] 496-501 (2011).   DOI