• Title/Summary/Keyword: Silicon Nitrate

Search Result 24, Processing Time 0.025 seconds

Effect of Magnesium Oxide on the Nitridation of Silicon Compact. (규소의 질화반응에 있어 산화마그네시움의 효과)

  • 박금철;최상원
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.4
    • /
    • pp.305-314
    • /
    • 1983
  • In order to enhance the rate of th nitridation and to give the high density of reaction-bonded silicon nitride MgO powder as nitriding aid were added to silicon powders and the mixture was pressed isostatically into compacts which were nitrided in the furnace of 1, 35$0^{\circ}C$ where 95% $N_2$-5% $H_2$ gases were flowing. As the other nitriding aid $Mg(NO_3)_2 6H_2O$ was selected, A slip made of magnesium nitrate solution and fine silicon particles was spray-dried and then decomposed at 30$0^{\circ}C$. Magnesium oxide-coated silicon powders were formed into compacts prior to the nitridation on the same condition as the former. Magnesium nitrate (MgO, produced from the decomposition of magnesium nitrate) was more effective for the formation of the $\beta$-phase in the initial stage of the nitridation probably due to the easy formation of $MgO-SiO_2$-metal oxide eutectic melt. It has been confirmed that forsterite was formed as a result of the reaction between MgO and $SiO_2$ film of silicon surface. It was considered that MgO produced from magnesium nitrate may be finer more reactive and more uniformly distributed on the surface of silicon particles than original MgO. The higher the forming pressure was the more the $\beta$-phase was formed.

  • PDF

Effect of the Interaction between Matrix and Nitrate Additives on the Sintering of Silicon Nitride

  • Park, Dae-Chul;Toyohiko Yano;Takayoshi Iseki
    • The Korean Journal of Ceramics
    • /
    • v.5 no.2
    • /
    • pp.142-147
    • /
    • 1999
  • The interaction between commercial $Si_3N_4$ powder and two types of additives (nitrate and oxide additives) during the sintering of $Si_3N_4$ was investigated. The nitrates solution or oxide particles were added as a sintering additives. The surface of mixed powder was observed with FT-IR, TG, and HREM. DTA was used to characterize the reactivity of the powders. The formation of crystalline phases and phase transformation were analyzed by XRD. The adsorption of the additives on the surface of silicon nitride was confirmed in the nitrate salts. It was shown that the adsorption occurred by interaction between the amorphous $SiO_2$ layer on the $Si_3N_4$ surface and metal cations $(Al^{3++\; and \;Y^{3+})$ and anions $(NO_3\;^-\; or\; OH^-)$, resulting in a higher degree of homogeneous distribution of additives.

  • PDF

Fabrication and Characterization of Free-Standing Silicon Nanowires Based on Ultrasono-Method

  • Lee, Sung-Gi;Sihn, Donghee;Um, Sungyong;Cho, Bomin;Kim, Sungryong;Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.6 no.3
    • /
    • pp.170-175
    • /
    • 2013
  • Silicon nanowires were detached and obtained from silicon nanowire arrays on silicon substrate using a ultrasono-method. Silicon nanowire arrays on silicon substrate were prepared with an electroless metal assisted etching of p-type silicon. The etching solution was an aqueous HF solution containing silver nitrate. SEM observation shows that well-aligned nanowire arrays perpendicular to the surface of the silicon substrate were produced. After sonication of silicon nanowire array, an individual silicon nanowire was confirmed by FESEM. Optical characteristics of SiNWs were measured by FT-IR spectroscopy. The surface of SiNWs are terminated with hydrogen.

Recovery of Silver from Nitrate Leaching Solution of Silicon Solar Cells (실리콘 태양전지 질산침출액에서 LIX63를 이용한 은(Ag) 회수)

  • Cho, Sung-Yong;Kim, Tae-Young;Sun, Pan-Pan
    • Resources Recycling
    • /
    • v.30 no.2
    • /
    • pp.39-45
    • /
    • 2021
  • Spent photovoltaic module is one of the important resource of silver, while related research concerning silver recovery remains limited. In our previous research, HNO3 was utilized to dissolve Ag(I) and Al(III) from the spent silicon solar cells. In order to recover Ag(I) from the leachate of a silicon solar cell, the present study made use of a nitrate solution containing Ag(I) and Al(III), which was subjected to a solvent extraction process with 5,8-diethyl-7-hydroxydodecan-6-oxime (LIX63). Ag(I) was selectively extracted with LIX63 over Al(III) from the nitrate leach solution. Subsequently, quantitative stripping of Ag(I) from the loaded LIX63 was performed by using 20% ammonia water. The McCabe-Thiele plots for the extraction and stripping isotherms of Ag(I) were also constructed. Extraction and stripping simulation tests confirmed an Ag(I) extraction and stripping efficiency of >99.99% and 98.9%, respectively with high purity Ag (99.998%) and Al (99.99%) solution. A process flow sheet for Ag(I) recovery from the nitrate leach solution was proposed.

Metal Surface Treatment Effects on Screen Printed Silicon Solar Cells

  • Chakrabarty K.;Mangalaraj D.;Kim K. H.;Dhungel S. K.;Park J. H.;Singh S. N.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.4
    • /
    • pp.22-25
    • /
    • 2003
  • High series resistance due to the presence of glass frit is one of the major problems for screen printed silicon solar cells. Cells having electrical parameters below the prescribed values are usually rejected during solar module fabrication. Therefore, it is highly desirable to improve the electrical parameters of the silicon solar cells and thereby to increase the overall production yield. It was observed that, the performance of low quality mono-crystalline silicon solar cells made by standard screen printing technology could be improved remarkably by novel surface treatment. We have chemically treated the surface using sodium hydroxide (NaOH) and silver nitrate ($AgNO_3$) solutions. NaOH treatment helps to reduce the series resistance by decreasing the presence of excess glass frit on the top silver grid contact. The $AgNO_3$ treatment is used to reduce the series resistance comes from the deposition of silver on the grids by filling the holes present (if any) within the grid pattern.

Effective Nitridation of Compacts of Coarse Silicon Particles (조립자규소 성형체의 효과적 질화가열법에 관한 연구(Densification of Silicon Nitride 3보))

  • 박금철;최상욱
    • Journal of the Korean Ceramic Society
    • /
    • v.21 no.1
    • /
    • pp.33-40
    • /
    • 1984
  • To find out the optimum heating profile for the nitridation of compacts of graded silicon grains (max 53$mu extrm{m}$) two batches with the addition of MgO and $Mg(NO_3)_3$$cdot$$6H_2O$ to silicon particles were isostatically pressed into compacts. They were nitrided under some different nitriding schedules. The properties such as bulk densitis microstructures and formed phases were measured and observed. The following results were obtained ; 1) About 10% unreacted silicon remained in specimen which was nitrided at 1, 350$^{\circ}C$ for 240hrs. 2) One of the step-heating processes 1, 150$^{\circ}C$-1, 390$^{\circ}C$ for 65hrs are then $1, 390^{\circ}C$for 50hrs was the low temperature but with that at high temperature. 3) High pressure(10.5kgf/$cm^2$) of nitrogen at 1, 390$^{\circ}C$ accelerated the $\alpha$$ ightarrow$$\beta$ transformation of silicon nitride. 4) Magnesium nitrate was superior to magnesium oxide in the role of nitriding aid and the formation of uniform microstructures.

  • PDF

The Characterization of Metal Silicon and Compacts for the Nitridation (질화반응용 금속규소 및 그 Compacts의 Characterization(Densification of Silocon Nitride 1보))

  • 박금철;최상욱
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.3
    • /
    • pp.211-216
    • /
    • 1983
  • This work aims at characterizing silicon grains and its compacts. In order to remove iron silicon grains were washed with 5N hydrochloride at 60-7$0^{\circ}C$ for 170 hrs, and then followed the chemical analysis by atomic absorption spectrophotometer X-ray diffraction analysis SEM observation and specific surface area determination by B. E. T. Mixtures of graded silicon particles with two or three different sizes were made into packings by mechanical vibration. The mixtures were used to make compacts with 10 mm in diameter and 70mm in length by isostatically pressing at 1, 208 kg/$cm^2$ (20 kpsi) and 4, 255kg/$cm^2$ (60 kpsi) respectively. Bulk densities of packings and compacts were measured. A slip made of magnesium nitrate solution and fine silicon particles was spray-dried and then decomposed at 30$0^{\circ}C$ for the purpose of coating the uniform layer of magnesium oxide on the surface of particles. The results obtained are as follows: (1) About two thirds of iron content could be removed from silicon by washing silicon powders with hydrochloride. (2) Uniform layer of magnesium oxide on the surface of silicon could be prepared by spray-drying suspension and by decomposing it. (3) B. E. T. specific surface area of fine silicon particles was 2, 826.753$m^3$/kg. (4) In the binary system with two sizes of 40-53$\mu\textrm{m}$ particles and <10$\mu\textrm{m}$ particles the maximum bulk density of packing was 55% of theoretical value and that of compacts made at the pressure of 4, 255 kg./$cm^2$ (60 kpsi) was 73% of theoretical value. (5) In the ternary system with three sizes the maximum bulk density of packing was 1.43 g/$cm^3$and that of compacts was 1.80g/$cm^3$which is equivalent to 77.6% of theoretical value. The composition of the closest compact was consisted of 50% of 40-53$\mu\textrm{m}$ particles 20% of 10-30$\mu\textrm{m}$ particles and 30% of <10$\mu\textrm{m}$ parti-cles.

  • PDF

Fabrication and Characterization of Dodecyl-derivatized Silicon Nanowires for Preventing Aggregation

  • Shin, Donghee;Sohn, Honglae
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3451-3455
    • /
    • 2013
  • Single-crystalline silicon nanowires (SiNWs) were fabricated by using an electroless metal-assisted etching of bulk silicon wafers with silver nanoparticles obtained by wet electroless deposition. The etching of SiNWs is based on sequential treatment in aqueous solutions of silver nitrate followed by hydrofluoric acid and hydrogen peroxide. SEM observation shows that well-aligned nanowire arrays perpendicular to the surface of the Si substrate were produced. Free-standing SiNWs were then obtained using ultrasono-method in toluene. Alkyl-derivatized SiNWs were prepared to prevent the aggregation of SiNWs and obtained from the reaction of SiNWs and dodecene via hydrosilylation. Optical characterizations of SiNWs were achieved by FT-IR spectroscopy and indicated that the surface of SiNWs is terminated with hydrogen for fresh SiNWs and with dodecyl group for dodecyl-derivatized SiNWs, respectively. The main structures of dodecyl-derivatized SiNWs are wires and rods and their thicknesses of rods and wire are typically 150-250 and 10-20 nm, respectively. The morphology and chemical state of dodecyl-derivatized SiNWs are characterized by scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy.

Characterization of Individual Atmospheric Particles, Collected in Susan, Korea, Using Low-Z Electron Probe X-ray Microanalysis (Low-Z Electron Probe X-ray Microanalysis 분석법을 이용한 해안인근 지역의 대기입자 분석)

  • 김혜경;노철언
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.5
    • /
    • pp.503-513
    • /
    • 2003
  • A single particle analytical technique, called low-Z electron probe X-ray microanalysis (low-Z EPMA) was applied to characterize atmospheric particles collected in Busan, Korea, over a daytime period in Dec. 2001. The ability to quantitatively analyze the low-Z elements, such as C, N, and 0, in microscopic volume enables the low-Z EPMA to specify the chemical composition of individual atmospheric particle. Various types of atmospheric particles such as organics, carbon-rich, aluminosilicates, silicon oxide, calcium carbonate, iron oxide, sodium chloride, sodium nitrate, ammonium sulfate, and titanium oxide were identified. In the sample collected in Busan, sodium nitrate particles produced as a result of the reaction between sea salt and nitrogen oxides in the atmosphere were most abundantly encountered both in the coarse and fine fractions. On the contrary, original sea salt particles were rarely observed. The fact that most of the carbonaceous particles were distributed in the fine fraction implies that their origin is anthropogenic.

Single Particle Analysis of Atmospheric Aerosol Particles Collected in Seoul, 2001, Using Low-Z Particle Electron Probe X-ray Microanalysis (Low-Z Particle Electron Probe X-ray Microanalysis를 이용한 2001년 서울시 대기 중 입자상 물질 분석)

  • Koo Hee Joon;Kim HyeKyeong;Ro Chul-Un
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.6
    • /
    • pp.823-832
    • /
    • 2004
  • Atmospheric aerosol particles collected in Seoul on four single days, each in every seasons of 2001, were characterized and classified on the basis of their chemical species using low-Z particle electron probe X-ray microanalysis (low-Z particle EPMA). Low-Z particle EPMA technique can analyze both the size and the chemical species of individual aerosol particles of micrometer size and provide detailed information on the size distribution of each chemical species. The major chemical species observed in Seoul aerosol were aluminosilicate, silicon dioxide, calcium carbonate, organic, carbon-rich, marine originated, and ammonium sulfate particles, etc. The soil originated species, such as aluminosilicate, silicon dioxide, and calcium carbonate were the most popular in the coarse fraction, meanwhile, carbonaceous and ammonium sulfate were the dominant species found in the fine fraction. Marine originated species such as sodium nitrate was frequently encountered, up to 30% of the analyzed aerosol particles.