• Title/Summary/Keyword: Silicon Material

Search Result 1,904, Processing Time 0.033 seconds

Preparation of Silicon-Carbon Composite via Magnesiothermic Reduction Method and Its Application to the Anode Material for Lithium Ion Battery (마그네슘열환원법을 이용한 실리콘-탄소 복합재 제조 및 리튬이차전지 음극재로의 이용)

  • Kim, Eudem;Kwon, Soon Hyung;Kim, Myung-Soo;Jung, Ji Chul
    • Korean Journal of Materials Research
    • /
    • v.24 no.5
    • /
    • pp.243-248
    • /
    • 2014
  • Silicon-carbon composite was prepared by the magnesiothermic reduction of mesoporous silica and subsequent impregnation with a carbon precursor. This was applied for use as an anode material for high-performance lithium-ion batteries. Well-ordered mesoporous silica(SBA-15) was employed as a starting material for the mesoporous silicon, and sucrose was used as a carbon source. It was found that complete removal of by-products ($Mg_2Si$ and $Mg_2SiO_4$) formed by side reactions of silica and magnesium during the magnesiothermic reduction, was a crucial factor for successful formation of mesoporous silicon. Successful formation of the silicon-carbon composite was well confirmed by appropriate characterization tools (e.g., $N_2$ adsorption-desorption, small-angle X-ray scattering, X-ray diffraction, and thermogravimetric analyses). A lithium-ion battery was fabricated using the prepared silicon-carbon composite as the anode, and lithium foil as the counter-electrode. Electrochemical analysis revealed that the silicon-carbon composite showed better cycling stability than graphite, when used as the anode in the lithium-ion battery. This improvement could be due to the fact that carbon efficiently suppressed the change in volume of the silicon material caused by the charge-discharge cycle. This indicates that silicon-carbon composite, prepared via the magnesiothermic reduction and impregnation methods, could be an efficient anode material for lithium ion batteries.

Synthesis of Carbon Nano Silicon Composites for Secondary Battery Anode Materials Using RF Thermal Plasma (RF 열플라즈마를 이용한 이차전지 음극재용 탄소나노실리콘복합소재 합성)

  • Soon-Jik Lee;Dae-Shin Kim;Jeong-Mi Yeon;Won-Gyu Park;Myeong-Seon Shin;Seon-Yong Choi;Sung-Hoo Ju
    • Korean Journal of Materials Research
    • /
    • v.33 no.6
    • /
    • pp.257-264
    • /
    • 2023
  • To develop a high capacity lithium secondary battery, a new approach to anode material synthesis is required, capable of producing an anode that exceeds the energy density limit of a carbon-based anode. This research synthesized carbon nano silicon composites as an anode material for a secondary battery using the RF thermal plasma method, which is an ecofriendly dry synthesis method. Prior to material synthesis, a silicon raw material was mixed at 10, 20, 30, 40, and 50 wt% based on the carbon raw material in a powder form, and the temperature change inside the reaction field depending on the applied plasma power was calculated. Information about the materials in the synthesized carbon nano silicon composites were confirmed through XRD analysis, showing carbon (86.7~52.6 %), silicon (7.2~36.2 %), and silicon carbide (6.1~11.2 %). Through FE-SEM analysis, it was confirmed that the silicon bonded to carbon was distributed at sizes of 100 nm or less. The bonding shape of the silicon nano particles bonded to carbon was observed through TEM analysis. The initial electrochemical charging/discharging test for the 40 wt% silicon mixture showed excellent electrical characteristics of 1,517 mAh/g (91.9 %) and an irreversible capacity of 133 mAh/g (8.1 %).

Surface Aging Properties of Silicon Rubber Insulator by salt-fog (Silicon rubber 애자의 salt-fog 표면열화 특성)

  • 이종찬;이운용;조한구;박대희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.255-257
    • /
    • 2001
  • In this paper, the silicon rubber insulator for transmission line was experimented for 1,000 hours aging test in salt-fog condition. To evaluate and examine the aging properties of silicon rubber insulator for test, the leakage current of surface was measured. Also hydrophobicity and scanning electron microscopy were compared with initial and aged sample respectively Above results, we can confirm that the surface properties of silicon rubber insulator easily aged by salt-fog condition.

  • PDF

Multi-mode Planar Waveguide Fabricated by a (110) Silicon Hard Master

  • Jung, Yu-Min;Kim, Yeong-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.12
    • /
    • pp.1106-1110
    • /
    • 2005
  • We fabricated (110) silicon hard master by using anisotropic wet etching for embossing. The etching chemical for the silicon wafer was a TMAH $25\%$ solution. The anisotropic wet etching produces a smooth sidewall surface and the surface roughness of the fabricated master is about 3 nm. After spin coating an organic-inorganic sol-gel hybrid material on a silicon substrate, we employed hot embossing technique operated at a low pressure and temperature to form patterns on the silicon substrate by using the fabricated master. We successfully fabricated the multi-mode planar optical waveguides showing low propagation loss of 0.4 dB/cm. The surface roughness of embossed patterns was uniform for more than 10 times of the embossing processes with a single hydrophobic surface treatment of the silicon hard master.

Electrochemical Properties of Surface-Modified Silicon as Anode for Lithium Secondary Batteries (실리콘 재료의 표면개질에 따른 리튬이차전지 음극 특성)

  • Park, Cheol-Wan;Doh, Chil-Hoon;Moon, Seong-In;Yun, Mun-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.602-606
    • /
    • 2003
  • Silicon has been developed as an alternate anode material for lithium secondary batteries. A simple approach to improve the electrical contact of silicon powder has described. Carbon-coated and silver-coated silicon have been prepared by chemical vapor deposition and electroless plating respectively. Assembled cells, which consisted of surface modified silicon, lithium foil and $Li^+$ contained organic electrolyte, have been studied using electrochemical methods. Carbon-coated silicon was improved in the electrochemical performance such as reversibility and resistance compared to surface-unmodified silicon.

  • PDF

Application study of silicon impression material for reducing metal artifacts: preliminary study for head and neck cancer radiotherapy

  • So Hyun Park;Jinhyun Choi;Byungdo Park;Jeongho Kim;Heesoo Lim;Dae-Hyun Kim
    • Journal of Medicine and Life Science
    • /
    • v.20 no.2
    • /
    • pp.83-88
    • /
    • 2023
  • Metal artifacts cause inaccuracies in target delineation, radiation treatment planning, and delivery when computed tomography images of a radiotherapy patient implanted with a high-density material in the body are acquired. In this study, we investigated the possibility of obtaining improved images in clinical trials through metal artifact reduction using silicon impression materials without the need for a specific metal artifact reduction algorithm. A silicon impression material exhibiting a constant Hounsfield unit (HU) value according to the mixing ratio of the catalysts and bases was selected. The material did not exhibit any change in weight or shape over time. For both the instances of inserting the metal material and applying the silicon impression material, the HU value and dose were compared with homogeneous cases filled with water-equivalent materials. When the silicon impression material was applied to the region where the high-density material was located, the HU value was within 5% and the dose was within 3% compared with those of the homogeneous cases. In this study, the silicon impression materials reduced metal artifacts. However, because the composition, shape, size, and location of high-density materials differ, further studies are required to consider these factors in clinical applications.

Silicon-Based Anode with High Capacity and Performance Produced by Magnesiothermic Coreduction of Silicon Dioxide and Hexachlorobenzene

  • Ma, Kai
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.317-322
    • /
    • 2021
  • Silicon (Si) has been considered as a promising anode material because of its abundant reserves in nature, low lithium ion (Li+) intercalation/de-intercalation potential (below 0.5 V vs. Li/Li+) and high theoretical capacity of 4200 mA h/g. In this paper, we prepared a silicon-based (Si-based) anode material containing a small amount of silicon carbide by using magnesiothermic coreduction of silica and hexachlorobenzene. Because of good conductivity of silicon carbide, the cycle performance of the silicon-based anode materials containing few silicon carbide is greatly improved compared with pure silicon. The raw materials were formulated according to a silicon-carbon molar ratio of 10:0, 10:1, 10:2 and 10:3, and the obtained products were purified and tested for their electrochemical properties. After 1000 cycles, the specific capacities of the materials with silicon-carbon molar ratios of 10:0, 10:1, 10:2 and 10:3 were still up to 412.3 mA h/g, 970.3 mA h/g, 875.0 mA h/g and 788.6 mA h/g, respectively. Although most of the added carbon reacted with silicon to form silicon carbide, because of the good conductivity of silicon carbide, the cycle performance of silicon-based anode materials was significantly better than that of pure silicon.

Poly-Si(SPC) NVM for mult-function display (디스플레이 다기능성 구현을 위한 Poly-Si(SPC) NVM)

  • Heo, Jong-Kyu;Cho, Jae-Hyun;Han, Kyu-Min;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.199-199
    • /
    • 2008
  • 이 실험은 NVM의 Oxide, Nitride, Oxide nitride층별 blocking, trapping and tunneling 속성에 대해서 밝히고자 한다. gate 전극은 값싸고 전도도가 좋은 알루미늄을 사용한다. 유리기판위에 Silicon nitride층을 20nm로 코팅하고 Silicon dioxide층을 10nm로 코팅한다. 그리고 amorphous Silicon material이 증착된다. Poly Silicon은 Solid Phase Crystallization 방법을 사용하였다. 마지막 공정으로 p-doping은 ion shower에 의한 방법으로 drain과 source 전극을 생성하였다. gate가 biasing 될 때, p-channel은 source와 drain 사이에서 형성된다. Oxide Nitride Oxide nitride (ONO) 층은 각각 12.5nm/20nm/2.3nm의 두께로 만들었다. 전하는 Program process 중에 poly Silicon층에서 Silicon Oxide nitride tunneling층을 통하여 움직이게 된다. 그리고 전하들은 Silicon Nitride층에 머무르게 된다. 그 전하들은 erasing process 중에 trapping 층에서 poly Silicon 층으로 되돌아 간다. Silicon Oxide blocking층은 trapping층으로 전하가 나가는 것을 피하기 위하여 더해진다. 이 논문에서 Programming process와 erasing process의 Id-Vg 특성곡선을 설명한다. Programming process에 positive voltage를 또는 erasing process에 negative voltage를 적용할 때, Id-Vg 특성 곡선은 왼쪽 또는 오른쪽으로 이동한다. 이 실험이 보여준 결과값에 의해서 10년 이상의 저장능력이 있는 메모리를 만들 수 있다. 그러므로, NVM의 중요한 두 가지 성질은 유지성과 내구성이다.

  • PDF

Improved Photoluminescence from Light-Emitting Silicon Material by Surface Modification

  • 김동일;이치우
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.11
    • /
    • pp.1019-1023
    • /
    • 1995
  • A light-emitting silicon material was prepared by electrochemical etching of n-Si single crystal wafers in a solution of hydrofluoric acid and ethanol. Visible photoluminescence from the silicon was inhomogeneous and decayed rapidly in the ambient laboratory conditions or with photoirradiation. Substantial improvements in photoluminescence which include little-dependent luminescence peak energy with excitation energy variation and longer-lasting room temperature visible photoluminescence were achieved when the surface of photoluminescent silicon material was derivatized with the surface modifier of octadecylmercaptan. Surface modification of the photoluminescent silicon was evidenced by the measurements of contact angles of static water drops, FT-IR spectra and XPS data, in addition to changed photoluminescence. Similar improvements in photoluminescence were observed with the light-emitting silicon treated with dodecylmercaptan, but not with octadecane. The present results indicate that sulfurs of octadecylmercaptans or dodecylmercaptans appear to coordinate the surface Si atoms of LESi and perturb the surface states to significantly change the luminescent characteristics of LESi.

Fabrication of Cylindrical Macroporous Silicon and Diaphragms (원통형 메크로기공을 갖는 다공질 실리콘과 다이어프램의 제작)

  • 민남기;이치우;하동식;정우식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.8
    • /
    • pp.620-627
    • /
    • 1998
  • For chemical microsensors such as humidity and gas sensors, it is essential to obtain a single pore with a large inner surface and straight structure. In this paper, cylindrical macroporous silicon layers have been formed of p-silicon substrate by anodization in HF-ethanol-water solution with an applied current. The pores grew normal to the (100) surface and were uniformly distributed. The pore diameter was approximately $1.5~2{\mu}m$ with a depth of $20~30{\mu}m$ and the pores were not interconnected, which are in sharp contrast to the porous silicon reported previouly for similarly doped p-Si. Porous silicon diaphragms 18 to $200{\mu}m$ thick were formed by anistropic etching in TMAH solution and then anodization. The fabrication of macroporous silicon and free-standing diaphragms is expected to offer applications for microsensors, micromachining, and separators.

  • PDF