• 제목/요약/키워드: Silicon/carbon

검색결과 632건 처리시간 0.024초

Effect of Silicon Infiltration on the Mechanical Properties of 2D Cross-ply Carbon-Carbon Composites

  • Dhakate, S.R.;Aoki, T.;Ogasawara, T.
    • Carbon letters
    • /
    • 제5권3호
    • /
    • pp.108-112
    • /
    • 2004
  • Effect of silicon infiltration on the bend and tensile strength of 2D cross-ply carbon-carbon composites are studied. It is observed that bend strength higher than tensile strength in both types of composite is due to the different mode of fracture and loading direction. After silicon infiltrations bend and tensile strength suddenly decreases of carbon-carbon composites. This is due to the fact that, after silicon infiltration, silicon in the immediate vicinity of carbon forms the strong bond between carbon and silicon by formation silicon carbide and un-reacted silicon as free silicon. Therefore, these composites consist of three components carbon, silicon carbide and silicon. Due to mismatch between these three components secondary cracks developed and these cracks propagate from $90^{\circ}$ oriented plies to $0^{\circ}$ oriented plies by damaging the fibers (i.e., in-situ fiber damages). Hence, secondary cracks and in-situ fiber damages are responsible for degradation of mechanical properties of carbon-carbon composites after silicon infiltration which is revealed by microstructure investigation study by scanning electron microscope.

  • PDF

Electrochemical Performance of Carbon/Silicon Composite as Anode Materials for High Capacity Lithium Ion Secondary Battery

  • Kim, Taek-Rae;Wu, Jing-Yu;Hu, Quan-Li;Kim, Myung-Soo
    • Carbon letters
    • /
    • 제8권4호
    • /
    • pp.335-339
    • /
    • 2007
  • Carbon/silicon composites were synthesized by mixing silicon powders with petroleum pitch and subsequent heat-treatment. The resultant composites were composed of carbon and nano-size crystalline silicon identified by XRD and EDX. FIB images and SEM images were taken respectively to detect the existence of silicon impregnated in carbon and the distribution of silicon on the carbon surface. The obtained carbon/silicon materials were assembled as half cell anodes for lithium ion secondary battery and their electrochemical properties were tested. The pitch/silicon composite (3 : 1 wt. ratio) heat treated at $1000^{\circ}C$ and mixed with 55.5 wt.% of graphite showed relatively good electrochemical properties such as the initial efficiency of 78%, the initial discharge capacity of 605 mAh/g, and the discharge capacity of 500 mAh/g after 20 cycles.

용융상태에서의 silicon과 carbon의 반응에 관한 연구 (A study on th reaction between silicon in melt and carbon)

  • M.J. Lee;B.J. Kim;S.M. Kang;J.K. Choi;B.S. Jeon;Keun Ho Orr
    • 한국결정성장학회지
    • /
    • 제4권4호
    • /
    • pp.336-346
    • /
    • 1994
  • 용융 silicon과 carbon 입자가 어떠한 반응관계를 나타내는가를 알아보기 위하여 sili-con만으로 된 powder와 silicon에 carbon을 0.2wt%의 비율로 혼합한 powder와 silicon에 carbon을 0.2wt%의 비율로 혼합한 powder를 silicon의 용융점 이사의 고온인 $1450^{\circ}C, 1550^{\circ}C, 1650^{\circ}C, 1700^{\circ}C$에서 각각 1시간, 4시간을 유지시킨 다음 quenching시켜 각각의 조건에 따른 반응의 정도 및 상의 분포와 morphology의 분석을 통해 melt sili-con의 morphology 변화,carbon이 함유된 silicon의 조건에 따른 물성변화 및 SiC의 형성여부를 조사하기 위하여 광학현미경과 SEM, XRD등을 이용하여 시편의 미세구조 및 결정화 양상을 관찰하였다. 용융점 이상의 온도에서 quartz는 연화하여 분해반응을 일으켜 산소를 내놓고 이것이 silicon과 결합하여 SiO로써 기체상태로 휘발하게 되어 silicon melt에 산소침투로 인항 표면결함을 형성하며, liquid silicon속에 용융되어 있던 carbonrhk 불순물로써 grain boundary를 따라 존재 하고 있는 미반응의 carbon이 용융상태 silicon과 반응하여 SiC를 형성한다. SiC 결정은 고화계 면에서 발생하게 되며 생성되는 결정은 ${\alpha}-SiC$이었다.

  • PDF

CNT를 첨가한 Silicon/Carbon 음극소재의 전기화학적 특성 (Electrochemical Characteristics of Silicon/Carbon Composites with CNT for Anode Material)

  • 정민지;박지용;이종대
    • Korean Chemical Engineering Research
    • /
    • 제54권1호
    • /
    • pp.16-21
    • /
    • 2016
  • 실리콘의 부피팽창과 낮은 전기전도도를 개선하기 위하여 Silicon/Carbon/CNT 복합체를 제조하였다. Silicon/Carbon/CNT 합성물은 SBA-15를 합성한 후, 마그네슘 열 환원 반응으로 Silicon/MgO를 제조하여 Phenolic resin과 CNT를 첨가하여 탄화하는 과정을 통해 합성하였다. 제조된 Silicon/Carbon/CNT 합성물은 XRD, SEM, BET, EDS를 통해 특성을 분석하였다. 본 연구에서는 충방전, 사이클, 순환전압전류, 임피던스 테스트를 통해 CNT 첨가량에 따른 전기화학적 효과를 조사하였다. $LiPF_6$ (EC:DMC:EMC=1 :1 :1 vol%) 전해액에서 Silicon/Carbon/CNT 음극활물질을 사용하여 제조한 코인셀은 CNT 함량이 7 wt% 일 때 1,718 mAh/g으로 높은 용량을 나타내었다. 코인셀의 사이클 성능은 CNT 첨가량이 증가할수록 개선되었다. 11 wt%의 CNT를 첨가한 Silicon/Carbon/CNT 음극은 두 번째 사이클 이후 83%의 높은 용량 보존율을 나타냄을 알 수 있었다.

Tumbling Bed에서 화학증착법에 의해 증착되는 열분해탄소의 특성에 미치는 Silicon-Alloying의 효과 (The Effect of Silicon-Alloying on the Characteristics of the Pyrolytic Carbonds Deposited in Tumbling Bed by CVD)

  • 윤영진;이재영
    • 한국세라믹학회지
    • /
    • 제20권2호
    • /
    • pp.166-172
    • /
    • 1983
  • In this study the sillicon-alloyed isotropic pyrolytic carbon was deposited in the tumbling bed from the pyrolysis of propane and silicon tetrachloride and investigated whether the silicon-alloyed isotropic pyrolytic carbon deposited in this study was usable as bionaterial or not. The silicon-allyed isotropic pyrolytic carbon was varied by controlling the process variables such as propane con-concentration and the argon flow rate flowing in to the silicon tetrachloride bubbler at a fixed reaction bed tempera-ture of 120$0^{\circ}C$ a rotation of reaction tube of 40 rpm a bed particle weight of 7.5 g and a total flow rate of 21/min; the propane concentration was varied from 10 to 70 and the argon flow rate flowing into the silicon tetrachloride bubble from 0 to 1000 cc/min. The results show that the silicon-alloyed isotropic pyrolytic carbon was obtained at all conditions investigated, . And then the alloyed silicon content is rangion from 7 to 14.5 wt%. The density and deposition rate of deposited silicon-alloyed isotropic carbon increased axxording to silicon content and propane concentration. And the apparent crystal-size(Lc) of pyrolytic carbon is not changed with silicon content. The density and apparant crystallite size are respec-tively in the range of 1.94 to 2.06 and 20 to 25$\AA$ It is shown that the silicon-alloyed isotropic pyrolytic carbon ob-tained in this experiment is usable as biomaterial.

  • PDF

Properties of Silicon Carbide-Carbon Fiber Composites Prepared by Infiltrating Porous Carbon Fiber Composites with Liquid Silicon

  • Lee, Jae-Chun;Park, Min-Jin;Shin, Kyung-Sook;Lee, Jun-Seok;Kim, Byung-Gyun
    • The Korean Journal of Ceramics
    • /
    • 제3권4호
    • /
    • pp.229-234
    • /
    • 1997
  • Silicon carbide-carbon fiber composites have been prepared by partially Infiltrating porous carbon fiber composites with liquid silicon at a reaction temperature of $1670^{\circ}C$. Reaction between molten silicon and the fiber preform yielded silicon carbide-carbon fiber composites composed of aggregates of loosely bonded SiC crystallites of about 10$\mu\textrm{m}$ in size and preserved the appearance of a fiber. In addition, the SiC/C fiber composites had carbon fibers coated with a dense layer consisted of SiC particles of sizes smaller than 1$\mu\textrm{m}$. The physical and mechanical properties of SiC/C fiber composites were discussed in terms of infiltrated pore volume fraction of carbon preform occupied by liquid silicon at the beginning of reaction. Lower bending strength of the SiC/C fiber composites which had a heterogeneous structure in nature, was attributed to the disruption of geometric configuration of the original carbon fiber preform and the formation of the fibrous aggregates of the loosely bonded coarse SiC particles produced by solution-precipitation mechanism.

  • PDF

Finite element modeling of the vibrational behavior of multi-walled nested silicon-carbide and carbon nanotubes

  • Nikkar, Abed;Rouhi, Saeed;Ansari, Reza
    • Structural Engineering and Mechanics
    • /
    • 제64권3호
    • /
    • pp.329-337
    • /
    • 2017
  • This study concerns the vibrational behavior of multi-walled nested silicon-carbide and carbon nanotubes using the finite element method. The beam elements are used to model the carbon-carbon and silicon-carbon bonds. Besides, spring elements are employed to simulate the van der Waals interactions between walls. The effects of nanotube arrangement, number of walls, geometrical parameters and boundary conditions on the frequencies of nested silicon-carbide and carbon nanotubes are investigated. It is shown that the double-walled nanotubes have larger frequencies than triple-walled nanotubes. Besides, replacing silicon carbide layers with carbon layers leads to increasing the frequencies of nested silicon-carbide and carbon nanotubes. Comparing the first ten mode shapes of nested nanotubes, it is observed that the mode shapes of armchair and zigzag nanotubes are almost the same.

Effect of Carbon-coated Silicon/Graphite Composite Anode on the Electrochemical Properties

  • Kim, Hyung-Sun;Chung, Kyung-Yoon;Cho, Byung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권10호
    • /
    • pp.1965-1968
    • /
    • 2008
  • The effects of carbon-coated silicon/graphite (Si/Gr.) composite anode on the electrochemical properties were investigated. The nanosized silicon particle shows a good cycling performance with a reasonable value of the first reversible capacity as compared with microsized silicon particle. The carbon-coated silicon/graphite composite powders have been prepared by pyrolysis method under argon/10 wt% propylene gas flow at $700{^{\circ}C}$ for 7 h. Transmission electron microscopy (TEM) analysis indicates that the carbon layer thickness of 5 nm was coated uniformly onto the surface silicon powder. It is confirmed that the insertion of lithium ions change the crystalline silicon phase into the amorphous phase by X-ray diffraction (XRD) analysis. The carbon-coated composite silicon/graphite anode shows excellent cycling performance with a reversible value of 700 mAh/g. The superior electrochemical characteristics are attributed to the enhanced electronic conductivity and low volume change of silicon powder during cycling by carbon coating.

Electrochemical Properties and Structural Analysis of Carbon-Coated Silicon Anode for Lithium Secondary Batteries

  • Kim, Hyung-Sun;Chung, Kyung-Yoon;Cho, Byung-Won
    • 전기화학회지
    • /
    • 제11권1호
    • /
    • pp.37-41
    • /
    • 2008
  • The effects of carbon-coated silicon anode on the electrochemical properties and structural change were investigated. The carbon-coated silicon powders have been prepared by thermal decomposition under argon/10wt% propylene mixed gas flow at $700^{\circ}C$. The surface and crystal structure of the synthesized materials were examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. Lithium cells with electrodes made from the uncoated and the carbon coated silicon anode were assembled and tested. The carbon-coated silicon particles merged together well after the insertion/extraction of lithium ions, and showed a relatively low irreversible capacity compared with the uncoated silicon particle.

마그네슘열환원법을 이용한 실리콘-탄소 복합재 제조 및 리튬이차전지 음극재로의 이용 (Preparation of Silicon-Carbon Composite via Magnesiothermic Reduction Method and Its Application to the Anode Material for Lithium Ion Battery)

  • 김으뜸;권순형;김명수;정지철
    • 한국재료학회지
    • /
    • 제24권5호
    • /
    • pp.243-248
    • /
    • 2014
  • Silicon-carbon composite was prepared by the magnesiothermic reduction of mesoporous silica and subsequent impregnation with a carbon precursor. This was applied for use as an anode material for high-performance lithium-ion batteries. Well-ordered mesoporous silica(SBA-15) was employed as a starting material for the mesoporous silicon, and sucrose was used as a carbon source. It was found that complete removal of by-products ($Mg_2Si$ and $Mg_2SiO_4$) formed by side reactions of silica and magnesium during the magnesiothermic reduction, was a crucial factor for successful formation of mesoporous silicon. Successful formation of the silicon-carbon composite was well confirmed by appropriate characterization tools (e.g., $N_2$ adsorption-desorption, small-angle X-ray scattering, X-ray diffraction, and thermogravimetric analyses). A lithium-ion battery was fabricated using the prepared silicon-carbon composite as the anode, and lithium foil as the counter-electrode. Electrochemical analysis revealed that the silicon-carbon composite showed better cycling stability than graphite, when used as the anode in the lithium-ion battery. This improvement could be due to the fact that carbon efficiently suppressed the change in volume of the silicon material caused by the charge-discharge cycle. This indicates that silicon-carbon composite, prepared via the magnesiothermic reduction and impregnation methods, could be an efficient anode material for lithium ion batteries.