• Title/Summary/Keyword: Silica sand

Search Result 239, Processing Time 0.029 seconds

Improving Strength in Casting Mold by Control of Starting Material and Process

  • Cho, Geun-Ho;Kim, Eun-Hee;Jung, Yeon-Gil
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.541-547
    • /
    • 2016
  • In developing high temperature molds with advantages of the sand and precision (investment) castings, mechanical properties of the mold were improved through homogeneous coating of starting powders with an inorganic binder and improvement of fabrication process. Beads with mullite composition were employed for properties of the mold under high temperature, which was compared with artificial sands. Precursors of silica and sodium oxide were used as starting materials for an inorganic binder to achieve homogeneous coating on the starting powders. Strength was enhanced by the glass phase converted from the inorganic binder through heat treatment process. Also, two kinds of process, wet and dry processes, were incorporated to prepare mold specimens. Consequently, fabrication process of the mold with superior strength and high temperature applicability, compared with the previous molds for sand casting, could be suggested through control of the starting material and enhancement of the vitrification efficiency.

Review of 3D Sandmold Binder Removal Time Using Electric Furnace (전기로를 활용한 3D 샌드몰드 바인데 제거 시간 검토)

  • Park, Yong-Kyu;Choi, Byung-Keol;Yoon, Ju Yong;Choi, Sang-Hoon;Yoon, Gi-Won;Lee, Dae-Seek
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.209-210
    • /
    • 2022
  • This research reviewed the status of binder removal depending on the heating temperature and duration by using the 3D sand mold as an electric heating method. In the case of the electric heating method, it was confirmed that a heating temperature of at least 800℃ or higher was required to remove the binder of the 3D sand mold, and the heating duration was confirmed to be about 10 minutes. Afterwards, it is considered necessary to further evaluate the additional binder removal method and the utilization of recycling silica in consideration of economic feasibility and productivity.

  • PDF

Thermal conductivity and viscosity of graphite-added bentonite grout for backfilling ground heat exchanger (지중 열교환기용 뒤채움재로서 흑연을 첨가한 벤토나이트 그라우트재의 열전도도 및 점도 특성)

  • Lee, Chul-Ho;Lee, Kang-Ja;Choi, Hang-Seok;Choi, Hyo-Pum
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.5 no.1
    • /
    • pp.19-24
    • /
    • 2009
  • Bentonite-based grouting has been usually used for sealing a borehole installed for a closed-loop vertical ground heat exchanger in a geothermal heat pump system (GHP) because of its high swelling potential and low hydraulic conductivity. The bentonite-based grout, however, has relatively lower thermal conductivity than that of ground formation. Accordingly, it is common to add some additives such as silica sand into the bentonite-based grout for enhancing heat transfer. In this study, graphite is adapted to substitute silica sand as an addictive because graphite has very high thermal conductivity. The effect of graphite on the thermal conductivity of bentonite-based grouts has been quantitatively evaluated for seven bentonite grouts from different product sources. In addition, the viscosity of graphite-added bentonite grout was measured to evaluate the field pumpability of the grout.

  • PDF

The Impact of the Developments and Dwellers on the Beach and Sanddune Characteristics in the Chungcheong-Namdo Province (지역개발과 주민생활이 환경에 미치는 영향 -충청남도의 비치와 해안사구를 사례로-)

  • Kahng, Tay-Gyoon
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.4
    • /
    • pp.291-302
    • /
    • 2003
  • This paper examined the impacts of the regional developments and dwellers behavior on the Seacoast. Seacoast features a variety of landforms which are created by the action of waves and tidal flows. The coastal landforms are found mainly in the interface between land and sea. Although erosional landforms constitute prominent landscape features as sea stack, sea arch, and rock cliff do, it is nonetheless the depositional features such as beaches, tidal flats, offshore bars, deltas, sanddunes, and coastal plains that have various ramifications for human communities. Among these, beaches and coastal sanddunes are special in that their formation is attributable to the combined action of waves, tidal flows, and winds. The main line of discussion in this dissertation is concerned with the transformation of group of beaches sanddunes along the coastline of Chungcheong-Namdo Province. To some extent, the erosion of coastal dunes has been a global phenomenon. The degradation process occurs most actively when the spring tides attack beaches, berms, and foredunes. Also involved in the transformation of coastal dunes are factors of human agency. The extent, speed, and pattern of their morphological changes are a function of land-use pattern. The reclamation of swale and the exploitation of sands as construction material and silica sand, for example, ruin the feature of coastal dunes.

Evaluation of performance of closed-loop vertical ground heat exchanger by In-situ thermal response test (현장 열응답 시험을 통한 수직 밀폐형 지중열교환기의 성능 평가)

  • Lee, Chul-Ho;Park, Moon-Seo;Kwak, Tae-Hoon;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.229-239
    • /
    • 2010
  • Performing a series of in-situ thermal response tests, the effective thermal conductivity of six vertical closed-loop ground heat exchangers was experimentally evaluated and compared each other, which were constructed in a test bed in Wonju. To compare thermal efficiency of the ground heat exchangers in field, the six boreholes were constructed with different construction conditions: grouting materials (cement vs. bentonite), different additives (silica sand vs. graphite) and the shape of pipe-sections (general U-loop type vs. 3 pipe-type). From the test results, it can be concluded that cement grouting has a higher effective thermal conductivity than that of bentonite grouting, and the efficiency of graphite better performs over silica sand as a thermally-enhancing addictive. In addition, a new 3 pipe-type heat exchanger provides less thermal interference between the inlet and outlet pipe than the conventional U-loop type heat exchanger, which results in superior thermal performance.

  • PDF

Evaluation of Mechanical Properties and Alkali-Silica Reaction of High Strength Mortar Using Waste Glass Sand (폐유리 잔골재를 치환한 고강도 모르타르의 역학적 특성 및 알칼리-실리카 반응 평가)

  • Eu, Ha-Min;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Son, Min-Jae;Nam, Jeong-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.528-536
    • /
    • 2020
  • In this study, high strength mortar and normal strength mortar using waste glass sand were evaluated. The main parameters studied were mechanical properties, alkali-silica reaction(ASR) and residual mechanical properties after ASR. As a result of this experiment, it was found that the increase in strength of the mortar has a limitation in improving the slip of the waste glass sand(GS), and rather, it causes a larger ASR. However, the possibility of improving the slip of GS was confirmed by the temporary increase of initial residal compressive and flexural strength of the mortar containing GS after the ASR. Therefore, to improve the slip of GS, the additional research is required, such as modification of the surface of GS and the incorporation of a binder which can increase the strength and makes matrix compact.

Critical State of Crushable Jeju Beach Sand (파쇄성이 큰 제주해사의 한계상태 특성)

  • Lee, Moon Joo;Bae, Kyung Doo;An, Sung Mo;Lee, Woo Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2C
    • /
    • pp.133-140
    • /
    • 2010
  • A series of triaxial test was performed in order to determine critical state parameters of calcareous Jeju sand, which comprises angular shape particles with many pores in the surface. It is observed that Jeju sand mainly shows the contractive behavior during triaxial shear due to high extreme void ratios and large compressibility. The peak friction angle of Jeju sand decreases slightly with increasing mean effective stress due to the particle crushing of carbonate materials. However, the peak friction angle of Jeju sand is higher than that of other silica sands because of the more angular particle shape. The critical state friction angle of Jeju sand gradually decreases when the mean effective stress at a critical state increases. Whereas, there is not a clear influence of void ratio on the critical state friction angle. Critical state parameters of Jeju sand are similar to those of calcareous sands, but significantly larger than those of common sands.

Flow Behavior and Mixing Characteristics of Rice Husk/Silica Sand/Rice Husk Ash (왕겨/모래/왕겨 회재의 유동 및 혼합 특성 연구)

  • Kim, Bo Hwa;Seo, Myung Won;Kook, Jin Woo;Choi, Hee Mang;Ra, Ho Won;Yoon, Sang Jun;Mun, Tae Young;Kim, Yong Ku;Lee, Jae Goo;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.533-542
    • /
    • 2016
  • We investigate fluidization characteristics of the mixture of rice husk, silica sand and rice husk ash as a preliminary study for valuable utilization of rice husk ash obtained from gasification of rice husk in a fluidized bed reactor. As experiment valuables, the blending ratio of rice husk and sand (rice husk: sand) is selected as 5:95, 10:90, 20:80 and 30:70 on a volume base. Rice husk ash was added with 6 vol% of rice husk for each experiment and air velocity to the reactor was 0~0.63 m/s. In both rice husk/sand and rice husk/sand/ash mixture, the minimum fluidization velocity (Umf) is observed as 0.19~0.21 m/s at feeding of 0~10 vol.% of rice husk and 0.30 m/s at feeding of 20 vol.% of rice husk. With increasing the amount of rice husk up to 30 vol.%, $U_{mf}$ can not measure due to segregation behavior. The mixing index for each experiment is determined using mixing index equation proposed by Brereton and Grace. The mixing index of the mixture of rice husk/sand and rice husk/sand/ash was 0.8~1 and 0.88~1, respectively. The optimum fluidization condition was found for the good mixing and separation of rice husk ash.

Effect of Autoclave Curing on the Microstructure of Blended Cement Mixture Incorporating Ground Dune Sand and Ground Granulated Blast Furnace Slag

  • Alawad, Omer Abdalla;Alhozaimy, Abdulrahman;Jaafar, Mohd Saleh;Aziz, Farah Nora Abdul;Al-Negheimish, Abdulaziz
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.3
    • /
    • pp.381-390
    • /
    • 2015
  • Investigating the microstructure of hardened cement mixtures with the aid of advanced technology will help the concrete industry to develop appropriate binders for durable building materials. In this paper, morphological, mineralogical and thermogravimetric analyses of autoclave-cured mixtures incorporating ground dune sand and ground granulated blast furnace slag as partial cementing materials were investigated. The microstructure analyses of hydrated products were conducted using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), differential thermal analysis (DTA), thermo-graphic analysis (TGA) and X-ray diffraction (XRD). The SEM and EDX results demonstrated the formation of thin plate-like calcium silicate hydrate plates and a compacted microstructure. The DTA and TGA analyses revealed that the calcium hydroxide generated from the hydration binder materials was consumed during the secondary pozzolanic reaction. Residual crystalline silica was observed from the XRD analysis of all of the blended mixtures, indicating the presence of excess silica. A good correlation was observed between the compressive strength of the blended mixtures and the CaO/$SiO_2$ ratio of the binder materials.

Development and Evaluation of a Dust Generator Using Soil Samples (토양 분진발생장치의 개발과 평가)

  • Lee, Ji-Yeon;Lee, Ki-Young
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.5
    • /
    • pp.383-390
    • /
    • 2010
  • Exposure to fugitive dust can contribute to several respiratory health problems, and proper sampling of fugitive dust is necessary to assess exposure. However, field sampling of soil dust encounters problems from spatial and temporal differences in soil properties, field operations, and meteorological conditions. To minimize these problems, we designed a dust generator that simulates dust generation from soil. The dust generator consisted of a rotating chamber where soil samples were loaded and tumbled, and a settling chamber, where airborne soil dust samples were collected. As standard operating conditions, we decided on 2 g soil mass, 10 min sampling time, and 20 rpm rotating speed, with a flow rate of 30 l/min, based on three common soil textures of loam, sandy loam and silt loam. To evaluate optimal operating conditions, we used mixtures of Joomoonjin silica sand and clay. Although the average $PM_{10}$ concentration of Joomoonjin silica sand was low, dust concentrations were increased by an increased content of clay. The dust concentrations were consistent across repeated experiments, and showed similar concentration profiles during the sampling time with mixtures of clay and sand (coefficient of variation was $13.6{\pm}w;7.1%$). The results demonstrated that these standard operating conditions were suitable for the dust generator, which can be used to investigate variations in soil properties that affect dust production and potential potency of fugitive dust exposure.