• Title/Summary/Keyword: Silica particle

Search Result 501, Processing Time 0.033 seconds

Preparation of Silica-Gold Composite particles (실리카-골드 복합체의 합성 연구)

  • Kim, Dae-Wook;Shim, Seung-Bo;Chun, Yong-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5365-5369
    • /
    • 2011
  • Silica-gold composite particles were prepared by wet chemical route including impregnation method. The effect of precursor and solvent on the preparation of silica-gold particles was investigated. When spherical silica particles and PVP and hydrogentetrachloroaurate(III) hydrate aqueous solution were used as support material and precursor solution, silica-gold composite particles with light pink color successfully obtained. Obtained composite particles were characterized using FE-SEM, FE-TEM and XRD.

Development of hybrid resin to reduce silica in borated water

  • Ramzan Akhtar ;Shahid Latif ;Syed Aizaz Ali Shah ;Shaukat Saeed ;Abdul Aziz
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2547-2555
    • /
    • 2023
  • Amberlite IRN-78 resin was incorporated with iron to make a hybrid resin for the removal of silica from the borated water of nuclear power plants. The hybrid resin contained 0.84 wt % iron compounds upon pyrolysis. In batch experiments carried out at room temperature, 1 g of the hybrid resin removed ~60 ㎍ silica from 1 ppm borated water in ~120 min. The efficiency of the hybrid material increased with the resin quantity, decreased with silica concentration, and remained unchanged at different pH values. Freundlich and Temkin isothermal adsorption dominated the silica removal process and followed the pseudo-first-order and intra-particle diffusion mechanism simultaneously. The concentration of the leached iron remained appreciably under the safe limits of 200 ㎍/l during the experiments. This detailed study suggests the use of hybrid resin for the removal of silica from borated water streams and other similar systems.

A Study on the Blue Fluorescence Characteristics of Silica Nanoparticles with Different Particle Size (실리카 나노 입자의 크기에 따른 청색 형광 특성 연구)

  • Yoon, Ji-Hui;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.1-6
    • /
    • 2019
  • Organic dye-doped silica nanoparticles are used as a promising nanomaterials for bio-labeling, bio-imaging and bio-sensing. Fluorescent silica nanoparticles(NPs) have been synthesized by the modified $St{\ddot{o}}ber$ method. In this study, dye-free fluorescent silica NPs of various sized were synthesized by Sol-Gel process as the modified $St{\ddot{o}}ber$ method. The functional material of APTES((3-aminopropyl)triethoxysilane) was added as an additive during the Sol-Gel process. The as-synthesized silica NPs were calcined at $400^{\circ}C$ for 2 hours. The surface morphology and particle size of the as-synthesized silica NPs were characterized by field-emission scanning electron microscopy. The fluorescent characteristics of the as-synthesized silica NPs was confirmed by UV lamp irradiation of 365 nm wavelength. The photoluminescence (PL) of the as-synthesized silica NPs with different size was analyzed by fluorometry. As the results, the as-synthesized silica NPs exhibits same blue fluorescent characteristics for different NPs size. Especially, as increased of the silica NPs size, the intensity of PL was decreased. The blue fluorescence of dye-free silica NPs was attributed to linkage of $NH_2$ groups of the APTES layer and oxygen-related defects in the silica matrix skeleton.

Alkali-Silica Reaction of Crushed Stones

  • Jun, Ssang-Sun;Jin, Chi-Sub
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.1E
    • /
    • pp.63-70
    • /
    • 2006
  • This study tested the alkali-silica reactivity of various types of crushed stones, following the specifications of ASTM C 227 and C 1260, and the results obtained from the tests were compared. This study also analyzed the effects of particle size and grading of reactive aggregate based on the expansion of mortar-bar due to an alkali-silica. The effect of mineral admixtures to reduce the detrimental expansion caused by the alkali-silica reaction was investigated based on the method specified by ASTM C 1260. The mineral admixtures used in this study were fly ash, silica fume, metakaolin and ground granulated blast furnace slag. The replacement ratios of 0, 5, 10, 15, 25 and 35% were uniformly applied to all the mineral admixtures, and the replacement ratios of 45 and 55% were additionally applied for the admixtures that could sustain the workability at these ratios. The results indicate that replacement ratios of 25% for fly ash, 10% for silica fume, 25% for metakaolin and 35% for ground granulated blast furnace slag were the most effective in reducing the expansion due to the alkali-silica reaction under the experimental conditions of this study.

Synthesis and Surface Characterization of Transition Metal Doped Mesoporous Silica Catalysts for Decomposition of N2O (N2O 분해를 위한 전이금속이 도핑된 메조포러스 실리카 촉매의 합성과 표면 특성에 관한 연구)

  • Lee, Kamp-Du;Noh, Min-Soo;Park, Sang-Won
    • Journal of Environmental Science International
    • /
    • v.21 no.7
    • /
    • pp.787-795
    • /
    • 2012
  • The purpose of this study is to synthesize transition metal doped mesoporous silica catalyst and to characterize its surface in an attempt to decomposition of $N_2O$. Transition metal used to surface modification were Ru, Pd, Cu and Fe concentration was adjusted to 0.05 M. The prepared mesoporous silica catalysts were characterized by X-ray diffraction, BET surface area, BJH pore size, Scanning Electron Microscopy and X-ray fluorescence. The results of XRD for mesoporous silica catalysts showed typical the hexagonal pore system. BET results showed the mesoporous silica catalysts to have a surface area of 537~973 $m^2/g$ and pore size of 2~4 nm. The well-dispersed particle of mesoporous silica catalysts were observed by SEM, the presence and quantity of transition metal loading to mesoporous surface were detected by XRF. The $N_2O$ decomposition efficiency on mesoporous silica catalysts were as follow: Ru>Pd>Cu>Fe. The results suggest that transition metal doped mesoporous silica is effective catalyst for decomposition of $N_2O$.

Mineralogical Analysis and Mechano-Chemical Purification of Natural Silica Ore for High Purity Silica Powder

  • Park, Jesik;Lee, Churl Kyoung;Lee, Hyun-Kwon
    • Korean Journal of Materials Research
    • /
    • v.26 no.6
    • /
    • pp.306-310
    • /
    • 2016
  • To produce 4N grade high-purity silica powder from natural ore, the mineralogical characteristics of natural silica ore were investigated and their effects on the purification process were revealed. The Chinese silica mineral ore used was composed of iron and aluminum as main impurities and calcium, magnesium, potassium, sodium, and titanium as trace impurities; these trace impurities generally exist as either single oxides or complex oxides. It was confirmed that liberation and acidic washing of the impurities were highly dependent on the particle size of the ground silica ore and on its mineralogical characteristics such as the distribution and phases of existing impurities. It is suggested that appropriate size reduction of silica ore should be realized for optimized purification according to the origin of the natural silica ore. A single step purification process, the mechano-chemical washing (MCW) process, was proposed and verified in comparison with the conventional multi step washing process.

Photoionization of $TiO_2$ Particles Incorporated into Silica Gels Studied by EPR Spectroscopy

  • Ahn, Sang-Won;Kang, Kee-Hoon;Hong, Dea-Il
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.4 no.1
    • /
    • pp.50-63
    • /
    • 2000
  • Titanium dioxide particles with three different average sizes, prepared by three different methods, were incorporated into silica gel pores by impregnation. The titanium dioxide incorporated into the silica gel pores was photoionized by 240-400 nm irradiation at 77 K by a one-photon process to from trapped hole centers on OH group and trapped electron centers on titanium which were detected by electron paramagnetic resonance at 77 K. During the impregnation the smallest size range of TiO2 particles can be incorporated into silica gels with 2.5-1.5 nm pores. However, the largest size range of TiO2 particles can only be incorporated into silica gels with 6-15 nm pores and not into silica gels with 2.5-4 nm pores. The photoyield and stability of photoinduced hole and electron centers depends on the silica pore sizes of silica gels and surface area as well as on the TiO2 loading. In large pore silica gels and large particle size of TiO2, photoinduced charge separation reaches to a plateau at shorter irradiation times and the trapped hole and electron centers are more stable to decay.

  • PDF

Preparation and Interface Properties of Colloidal Silica (콜로이드 실리카의 제조 및 계면특성)

  • Lee, Han Chul;Kim, Jong Hyub;Chang, Yoon Ho
    • Applied Chemistry for Engineering
    • /
    • v.17 no.4
    • /
    • pp.386-390
    • /
    • 2006
  • Colloidal silica which has high surface area and excellent surface properties are chemically stable inorganic materials and used for various applications in industry. Silica sol was prepared from sodium silicate solution by acid neutralization method and ion exchange treatment to remove sodium ions. Through the experimental analysis for controlling factors of particle growth rate, such as temperature, pH, and aging time, the uniform size distribution of silica sol could be obtained. The size distribution and shape of silica sol was measured by TEM and dynamic light scattering method. Zeta potential change and gelling phenomena of silica sol and its rheological properties also investigated.

Effect of Heating Treatment of Silica Powder on Stirred Ball Milling Efficiency (규석 분말의 교반형 볼 밀 분쇄효율에 미치는 열처리의 영향)

  • 김병곤;박종력;최상근;이재장
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.7
    • /
    • pp.696-701
    • /
    • 2003
  • The grinding efficiencies of silica powder in a small scale stirred ball mill were investigated by energy consumption estimate. Comparing with a non-treated silica powder and a heating treated silica powder, it was found that a silica powder cooled in room temperature after heating treatment at 600∼900$^{\circ}C$ consumed lower grinding energy than non-treated silica powder, and a silica powder quenched after heating treatment consumed lower grinding energies about 52∼62%, in case of dry grinding. Additionally, if heating treated silica powder grind in wet method, energy consumption will be decreased about 40% than in dry grinding, and the dependency of the particle size to the grinding efficiency, quenching significantly improved it.

Electrical and Mechanical Strength Properties of Epoxy/Micro Silica and Alumina Composites for Power Equipment (전력기기용, 에폭시/마이크로 실리카 및 알루미나 복합제의 전기적·기계적 파괴 강도 특성)

  • Park, Joo-Eon;Park, Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.7
    • /
    • pp.496-501
    • /
    • 2018
  • In this study, we prepared 40, 45, 50, 55, 60, 65, and 70 wt% content composites filled in epoxy matrix for two micro silica and three micro alumina types for use as a GIS heavy electric machine. As a filler type of epoxy composite, micro silica composites showed excellent AC breakdown strength properties compared to micro alumina composites in the case of electrical properties of micro silica and alumina. The electrical breakdown properties of micro silica composites increased with increasing filler content, whereas those of micro alumina decreased with increasing filler content. In the case of mechanical properties, the micro silica composite showed improved tensile strength and flexural strength compared with the micro alumina composite. In addition, mechanical properties such as tensile strength and flexural strength of micro silica and alumina composites decreased with increasing filler content. This is probably because O-H groups are present on the surface of silica in the case of micro silica but are not present on the surface of alumina in the case of micro alumina.