• Title/Summary/Keyword: Silica gel-water

Search Result 283, Processing Time 0.031 seconds

Development of Ceramic Composite Membranes for Gas Separation: I. Coating Characteristics of Nanoparticulate SiO2 Sols (기체분리용 세라믹 복합분리막의 개발: I. 극미세 입자 실리카 졸의 코팅 특성)

  • ;Marc A. Anderson
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.6
    • /
    • pp.496-504
    • /
    • 1992
  • Alumina tubes suitable for the support of gas separation membranes have been prepared by the slipcasting technique. These supports have the average pore size of 0.1 ${\mu}{\textrm}{m}$ within the narrow distribution. The sol-gel dipcoating process of nanoparticulate sols is very sensitive to microstructure of the support, and the coating on the inside surface of the tube is found to be more successful than on the outside surface. Nanoparticulate silica sols (0.82 mol/ι) have been synthesized by an interfacial hydrolysis reaction between TEOS and high alkaline water. When coating an alumina tube with these sols, the minimum limits of the particle size and the aging time required for forming the coated gel layer at the given pH are provided. It is optimum to coat the support with less concentrated sols stabilized through aging for the appropriate time (more than 22 days) at the lower pH (pH 2.0) for producing a reproducible crack free thin film coating in composite membranes.

  • PDF

Nanocomposite SiEA-KNiFe sorbent - Complete solution from synthesis through radiocesium sorption to vitrification using the sol-gel method

  • Chmielewska, Dagmara;Siwek, Malgorzata;Wawszczak, Danuta;Henczka, Marek;Sartowska, Bozena;Starosta, Wojciech;Dudek, Jakub
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.407-416
    • /
    • 2018
  • This study presents a novel complete solution starting with a synthesis of silica modified with potassium-nickel hexacyanoferrate and ethanolamine (SiEA-KNiFe) sorbent through radiocesium sorption in different process configurations and moving on to the vitrification of the spent sorbent, using the sol-gel method. The experimental data for deionized water solution, as well as seawater solution, correlates strongly with the Langmuir isotherm model. Moreover, the study also presents a method for spent sorbent solidification in the glass matrix. The cesium leaching test confirmed that spent sorbent can be stably bound in the glass matrix after radionuclide removal.

Nano-Silica effect on the physicomechanical properties of geopolymer composites

  • Khater, H.M.
    • Advances in nano research
    • /
    • v.4 no.3
    • /
    • pp.181-195
    • /
    • 2016
  • Addition of nano-$SiO_2$ (NS) to geopolymer composites has been studied through measurement of compressive strengths, FTIR and XRD analysis. Alumino-silicate materials are coarse aggregate included waste concrete and demolished walls with its cementing binder, cement kiln dust (CKD) used and can possess a pronouncing activation for the geopolymer reaction resulting from the high alkali contents within. Materials prepared at water/binder ratios in a range of 0.30: 0.40 under curing of $40^{\circ}C$ and 100% Relative Humidity (R.H.), while the used activator is sodium hydroxide in the ratio of 2 wt. %. First, CKD is added in the ratio from 10 up to 50 wt., %, and the demolished walls was varied depending on the used CKD content, while using constant ratio of waste concrete (40 wt., %). Second step, depending on the optimum CKD ratio resulted from the first one (40 wt. %), so the control geopolymer mix composed of cement kiln dust, demolished walls and waste concrete in the ratio (40:20:40, wt %). Nano-silica partially replaced waste concrete by 1 up to 8%. Results indicated that, compressive strengths of geopolymer mixes incorporating nano-silica were obviously higher than those control one, especially at early ages and specially with 3%NS.

Porous silica ceramics prepared by sol-gel process-Effect of $H_2O/TEOS$ molar ratio- (솔-젤법에 의한 다공성 실리카 세라믹스의 제조-$H_2O/TEOS$ 몰비의 영향-)

  • Lee, Jin-Hui;Kim, Wha-Jung;Lee, Joon
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.2
    • /
    • pp.216-224
    • /
    • 1997
  • Porous silica ceramics were prepared(with HCI catalyst) using H2O/TEOS molar ratios of 2.6~59.0, with the EtOH/TEOS ratio fixed. After preparing 9 kinds of sol, the followings were investigated; measurement of the gelation time, thermal analyses by TG/DTA, property analyses of the intermediates by FT-IR and X-ray diffractometry with dried samples, analyses of SiO2 polymer by FT-IR, the investigation of specific sur-face area and pore size distribution by N2-adsorption isotherm, and structural change of SiO2 polymer and pore morphology by TEM observation, with samples heat-treated to 50$0^{\circ}C$. In the concentrations of in-vestigated compositions and catalyst, gelation time showed a minimum at ca. 11 moles of water per one mole of TEOS, the highest degree of polymerization at ca. 8-18 moles, and the largest specific surface area at ca. 11 moles, which means that the polymerization proceeded fastest at ca. 11 moles of water. In con-clusion, the more water used, the faster the polymerization reaction up to ca. 11 moles, but more than ca. 11 moles of water caused retardation of gelation and resultant reduction of specific surface area.

  • PDF

Antimicrobial Activity of terminalia chebula Retz. Extract of against Intestinal Pathogens (장내 유해세균에 대한 가자(Terminalia chebula Retz.) 추출물의 항균 활성)

  • 이갑상;김성효
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.4
    • /
    • pp.559-563
    • /
    • 1997
  • Terminalia chebula Retz., which was showed antimicrobial activity against intestinal pathogens through screening herbs related treatments of intestinal diseases, were extracted by methanol and fractionated by n-hexane, ethylether, ethylacetate,and water. Antimicrobial activities of the methanol extract and each fractionates were then investigated under the anaerobic broth system. The methanol extract showed antimicrobial activity against all intestinal pathogens(Eubacterium limosum ATCC 10825, Escherichia coli ATCC 25922 and Staphylococcus aureus KFCC 11764 hardly grew at 2,000$\mu$g/ml of concentration. Especially, Escherichia coli ATCC 25922 and Staphylococcus aureus KFCC 11764 hardly grew at 2,000$\mu$g/ml of concentration. There is no significant difference of antimicrobial activity among each fractionates. Fraction of Terminaliz chebula Retz. ethylacetate fractionate, which were fractionated by Sephadex G-200 and Silica gel column chromatography revealed the strongest antimicrobial activity at 12 to 21 and 22 to 34 of fraction number, respectively.

  • PDF

Flavonoids from the Leaves of Ailanthus altissima Swingle and their Antioxidant Activity

  • Lee, Min-Kyung;Kim, Su-Yeon;Park, Ji-Hae;Lee, Do-Gyeong;Lee, Dae-Young;Kim, Geum-Soog;Kim, Yong-Bum;Han, Dae-Seok;Lee, Chang-Ho;Baek, Nam-In
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.4
    • /
    • pp.213-217
    • /
    • 2013
  • Phytochemical studies on the leaves of Ailanthus altissima (Simaroubaceae) have not been reported previously. Thus, the authors isolated and identified secondary metabolites from A. altissima. Dried and powdered leaves were extracted with 80% aqueous methanol, and the concentrated extract was successively partitioned with ethyl acetate, n-butanol, and water. Four flavonoids were isolated from the ethyl acetate fraction through repeated silica gel and octadecyl silica gel column chromatography. Spectroscopic data including NMR, MS, and IR allowed for identification of the chemical structures as quercetin (1), afzelin (2), quercitrin (3), and isoquercitrin (4). This is the first report of the isolation of these compounds from A. altissima. The four isolated flavonoids 1-4 as well as solvent fractions (ethyl acetate, n-butanol, and water), were evaluated for DPPH radical scavenging activity.

Isolation and Identification of 3-Methoxy-4-hydroxybenzoic acid and 3-Methoxy-4-hydroxycinnamic acid from Hot Water Extracts of Hovenia dulcis Thunb and Confirmation of Their Antioxidative and Antimicrobial Activity (헛개나무 열수추출물로부터 항산화 및 항미생물 활성을 갖는 3-methoxy-4-hydroxybenzoic acid 와 3-methyoxy-4-hydroxycinnamic acid의 분리 및 동정)

  • Cho, Jeong-Yong;Moon, Jae-Hak;Park, Keun-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.1403-1408
    • /
    • 2000
  • The methanol soluble fraction of the hot water extracts from Hovenia dulcis Thunb showed antioxidative and antimicrobial activity. The methanol fraction was successively purified with solvent fractionation, silica gel adsorption column chromatography, Sephadex LH-20 column chromatography, and octadecylsilane column chromatography. The purified active substances were isolated by high performance liquid chromatography. The isolated substances were identified as 3-methoxy-4-hydroxybenzoic acid (vanillic acid) and 3-methoxy- 4-hydroxycinnamic acid (ferulic acid) by LC-MS and GC-MS. Vanillic acid and ferulic acid showed antimicrobial activity against Gram-positive bacteria, Gram-negative bacteria and yeast. The DPPH-radical scavenging activity of ferulic acid appeared more active than that of vanillic acid. DPPH-radical scavenging concentration of ferulic acid and vanillic acid were $14\;{\mu}g/mL\;(SC_{50})$, $100\;{\mu}g/mL\;(SC_{10})$, respectively.

  • PDF

Veriation of Pore Structure of High Strength Concrete Including Silica Fume Exposed to High Temperature (고온에 노출된 실리카퓸 혼입 고강도 콘크리트의 공극구조 변화)

  • Song Hun;Soh Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.597-604
    • /
    • 2004
  • This work involves quantitatively investigating the correlation between reductions in strength and variations in pore structure under high temperature that can be utilized as estimation for predicting the inner temperature of member damaged by fire. The experimental results were remarkedly affected by micro-filling effect of silica fume and the different water-binder ratios. The increase of the exposure temperature caused the increase of porosity, which resulted from the reason that evaporable water in gel pore or capillary pores as well as chemically bound water was eliminated from hardened cement paste due to the dehydration of C-S-H and $Ca(OH)_2$. Thermal shrinkage of hardened cement paste gives rise to micro-crack, which cause the increase of porosity. Based on the experimental result that the increase of porosity is in charge of exposure temperature, how porosity is distributed can predict temperature-time history and assess the performance of concrete damaged by fire.

Determination of Cyhalofop-butyl and its Metabolite in Water and Soil by Liquid Chromatography (LC를 이용한 물과 토양 중 Cyhalofop-butyl과 대사물질의 분석)

  • Hem, Lina;Choi, Jeong-Heui;Liu, Xue;Khay, Sathya;Shim, Jae-Han
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.4
    • /
    • pp.315-322
    • /
    • 2008
  • In this study, a simple, effective, and sensitive method has been developed for the quantitative residue analysis of cyhalofop-butyl and its metabolite cyhalofop acid in water and soil when kept under laboratory conditions. The content of cyholofop-butyl and cyhalofop acid in water and soil was analyzed by first purifying the compounds through liquid-liquid extraction and partitioning followed by Silica gel (adsorption) chromatography. Upon the completion of the purification step the residual levels were monitored through high-performance liquid chromatography (HPLC) using a UV absorbance detector. The recoveries of cyhalofop-butyl from three replicates spiked at two different concentrations ranged from 82.5 to 100.0% and from 66.7 to 97.9% in water and soil, respectively. The limit of detection and minimum detection level of cyhalofop-butyl in water and soil was 0.02 ppm and 10 ng, respectively. The recoveries of cyhalofop acid ranged from 80.7 to 104.8% in water and from 76.9 to 98.1 % in soil. The limit of detection of cyhalofop acid was 0.005 ppm in water and 0.01 ppm in soil, while the minimum detection level was 2 ng both in water and soil. The half-live of cyhalofop-butyl was 4.14 and 6.6 days in water and soil, respectively. The method was successfully applied to evaluate cyhalofop-butyl residues in water and soil applied aj. 30% emulsion, oil in water (EW) product.

Synthesis of Silica Nanoparticles Having the Controlled Size and their Application for the Preparation of Polymeric Composites (크기가 제어된 실리카 나노입자 합성과 제조된 입자의 고분자계 복합재 응용)

  • Kim, Jong-Woung;Kim, Chang-Keun
    • Polymer(Korea)
    • /
    • v.30 no.1
    • /
    • pp.75-79
    • /
    • 2006
  • Silica nanoparticles for polymeric dental restorative composites were prepared by Stober method, and then the effects of surface treatment of silica particles with Lmethacrylofpropyltrimethofsilane $(\gamma-MPS)$ on the dispersity of the silica particles in the organic matrix was investigated. Particles having various average size were prepared by using controlled amounts of tetraethylorthosilicate(TEOS), water, and catalyst and by changing solvent used for reaction. The site of particles prepared by using methanol as solvent was smaller than that prepared by using ethanol as solvent. In addition, the size of particles was increased by decreasing amounts of water and by increasing amounts of TEOS and catalyst. Hydrophobic silica nanoparticles was prepared by reacting hydrophilic nanoparticles with $\gamma-MPS$ to improve interfacial properties with organic matrix. Amounts of $\gamma-MPS$ per unit mass of the particles was increased by decreasing particle size. even though the amount of $\gamma-MPS$ per specific surface area were nearly the same regardless of the particle size. The dispersity of the silica particles in the organic matrix was improved when the surface treated silica particles were used for preparing the polymeric dental restorative composites.