• Title/Summary/Keyword: Silica Carbon Black

Search Result 91, Processing Time 0.019 seconds

Influence of Styrene Contents on Retraction Behaviors of SBR Vulcanizates (SBR 가황물의 회복 거동에 미치는 스티렌 함량의 영향)

  • Choi, Sung-Seen;Woo, Chang-Su;Chang, Dong-Ho
    • Elastomers and Composites
    • /
    • v.40 no.4
    • /
    • pp.237-241
    • /
    • 2005
  • Influence of the styrene content on the retraction behaviors of SBR vulcanizates was studied. SBRs with different styrene contents of 15 and 21 wt% were used. The vulcanizate with low styrene content started to recover at lower temperature than that with high one. The recovery rate of the vulcanizate with low styrene content was slower than that with high one. The recovery difference between the two vulcanizates with different styrene contents was larger for the carbon black-filled vulcanizates than for the silica-filled ones. The experimental results were explained with the glass transition temperature and modulus.

Determination of Abrasion Rate of SBR Rubber Compounds using a Knife-blade Abrader (칼날형 마모시험기를 이용한 SBR 배합고무의 마모속도 결정)

  • Kim, Dong-Hui;Kaang, Shinyoung
    • Elastomers and Composites
    • /
    • v.49 no.2
    • /
    • pp.149-154
    • /
    • 2014
  • Friction and abrasion behaviors were investigated for SBR rubber compounds reinforced by silica and carbon black. Knife-blade abrader, newly designed based on tearing energy theory, was utilized in order to evaluate the effect of frictional work on the wear rate of the rubber compounds. It was found that the power law relation between frictional work and wear rate worked, in which as the wear rate was increased as frictional work increased. The wear rate could be determined successfully using the knife-blade abrader in which a moving distance of the knife blade in the process of wearing was measured continuously, instead of intermittent measurements of weight loss by wear during experiment.

A Comparison Study on Reinforcement Behaviors of Functional Fillers in Nitrile Rubber Composites

  • Seong, Yoonjae;Lee, Harim;Kim, Seonhong;Yun, Chang Hyun;Park, Changsin;Nah, Changwoon;Lee, Gi-Bbeum
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.306-313
    • /
    • 2020
  • To investigate the reinforcing effects of functional fillers in nitrile rubber (NBR) materials, high-structure carbon black (HS45), coated calcium carbonate (C-CaCO3), silica (200MP), and multi-walled carbon nanotubes (MWCNTs) were used as functional filler, and carbon black (SRF) as a common filler were used for oil-resistant rubber. The curing and mechanical properties of HS45-, 200MP-, and MWCNT-filled NBR compounds were improved compared to those of the SRF-filled NBR compound. The reinforcing effect also increased with a decrease in the particle size of the fillers. The C-CaCO3-filled NBR compound exhibited no reinforcing effect with increasing filler concentration because of their large primary particle size (2 ㎛). The reinforcing behavior based on 100% modulus of the functional filler based NBR compounds was compared by using several predictive equation models. The reinforcing behavior of the C-CaCO3-filled NBR compound was in accordance with the Smallwood-Einstein equation whereas the 200MP- and MWCNT-filled NBR compounds fitted well with the modified Guth-Gold (m-Guth-Gold) equation. The SRF- and HS45-filled NBR compounds exhibited reinforcing behavior in accordance with the Guth-Gold and m-Guth-Gold equations, respectively, at a low filler content. However, the values of reinforcement parameter (100Mf/100Mu) of the SRF- and HS45-filled NBR compounds were higher than those determined by the predictive equation model at a high filler content. Because the chains of SRF composed of spherical filler particles are similarly changed to rod-like filler particles embedded in a rubber matrix and the reinforcement parameter rapidly increased with a high content of HS45, the higher-structured filler. The reinforcing effectiveness of the functional fillers was numerically evaluated on the basis of the effectiveness index (��SRF/��f) determined by the ratio of the volume fraction of the functional filler (��f) to that of the SRF filler (��SRF) at three unit of reinforcing parameter (100Mf/100Mu). On the basis of their effectiveness index, MWCNT-, 200MP-, and HS45-filled compounds showed higher reinforcing effectiveness of 420%, 70%, and 20% than that of SRF-filled compound, respectively whereas C-CaCO3-filled compound exhibited lower reinforcing effectiveness of -50% than that of SRF-filled compound.

Testing the Potential of Sewage Sludge Gasification Solid Residues as a Circulating Resource by Physical Separation (하수슬러지의 가스화 고형 잔재물의 순환자원으로서 물리적 선별에 의한 잠재성 검토)

  • Donghyun Kim;Sunghyun Bae;Seongmin Kim;Seongsoo Han;Yosep Han;Gi Woon Kwon
    • Resources Recycling
    • /
    • v.33 no.3
    • /
    • pp.48-56
    • /
    • 2024
  • In this study, physical property evaluation and physical separation of the target product were performed to investigate the possibility of using sewage sludge gasification solid residue (GSRs) as a circulating resource. Firstly, the GSRs used in this study was supplied by Sudokwon Landfill Management Corporation, and generally the GSRs was in the form of porous pellets with a particle size of several millimetres. In addition, the partially black areas were confirmed to be unburned and ungasified carbon, and the average carbon content was 5%. In addition, the content of silica, alumina and phosphorus oxide was more than 70% of the total content. It was confirmed that the metallic components of the wet grinding product were separated into individual elements. As a physical separation of metallic and non-metallic components was required, it was finally found that flotation screening was suitable. Accordingly, cationic and anionic surfactants were selected to separate metallic components in which a relatively large amount of non-metallic components were concentrated, and the separation characteristics were confirmed. As a result, it is expected that the concentration of non-metallic components such as silica, alumina and phosphorus will be easier than the separation of metallic components. Therefore, since it is possible to physically treat the gasified sludge residue, it is judged to have potential as a circular resource according to the proposed recycling method for the separated product.

The Effect of Additives on the Mechanical Properties of Rigid Polyurethane (경질 폴리 우레탄의 기계적물성에 미치는 첨가제의 영향)

  • Na, Seok-En;Choi, Hwan-Oh;Lee, Jeon-Kyu;Kim, Si-Young;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.783-788
    • /
    • 2012
  • Stern tube bearing is a shaft device playing important roles to reduce the friction of axial rotation and to support the weight of shaft. However, because there is no domestic producer of stern tube bering, imported stern tube bearings have many practical problems including prices, delivery and after services. This is why stern tube bearing should be localization. For the purpose of development of polyurethane resin for stern tube bearings, the effect of additives on the hardness, tensile strength and elongation of the polyurethane resin were systematically investigated. For the preliminary researches, depending on the type of curing agent, MOCA type and non-MOCA type polyurethanes were synthesized. Preliminary researches concluded that MOCA type polyurethane resin has more excellent mechanical properties than non-MPCA type for stern tube bearings that Tensile strength and Hardness of non-MOCA type investigated 23 D, 4.3 Mpa. Therefore, MOCA type polyurethane was adapted as base resin of this research. Silica, calcium carbonate and graphite were selected as additives for the enhancement of mechanical properties of polyurethane resin. Effect of the type and the dosage of these additives on the hardness, tensile strength, elongation of the polyurethane resin were experimentally examined. However, addition of calcium carbonate and graphite showed only minor effect on the hardness of the resin. Polyurethane resin with silica showed relatively excellent hardness, tensile strength and improved elongation.

Analysis of the Effect of Superplasticizer combined CASB on Ultra High Strength Mortar and Concrete Using Mineral Admixture (광물질 혼화재 사용 초고강도 모르타르 및 콘크리트에 CASB 화합 고성능감수제의 효과분석)

  • Han, Cheon-Goo;Yoo, Seung-Yeup
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.72-79
    • /
    • 2011
  • This study is performed to analyze the effects of CASB by applying the superplasticizer combined CASB on the ultra high strength mortar and concrete that uses different mineral admixture depending on whether the silica fume was used and the results are summarized below. From the characteristics of Fresh mortar and concrete, the fluidity was lower in B2-CASB than B2-PC from the mixing of CASB and based on the viscosity of the mortar and concrete in the binary proportion but in the ternary proportion, B3-CASB showed a larger fluidity than B3-PC because of a reduction in the restriction level due to the effects of an improvement of particle size distribution. The compression strength was higher in ternary proportion than in binary proportion and higher in CASB than in PC from the characteristics of hardening mortar and concrete and this is analyzed as a result of increased minuteness from the calcium silicate hydrates produced from the pozzolan reaction of a mineral admixture, SF, and also the charging effects of capillary pore of CASB. Overall, when using the nanomaterial, CASB in combination with a superplasticizer, the fluidity and the strength aspects of the ternary proportion of ultra high strength mortar and concrete with silica fume may be improved to a higher quality.

  • PDF

Effect to Fillers for FKM (Fluorocarbon rubber) Gasket in Fuel Cell Stack (연료전지 스택 가스켓용 불소고무에 있어 충전제 종류에 따른 영향)

  • Hur, Byung-ki;Kang, Dong-gug;Yoo, Il-hyuk;Lee, Dong-won;Seo, Kwan-ho;Park, Lee-soon
    • Applied Chemistry for Engineering
    • /
    • v.19 no.1
    • /
    • pp.86-91
    • /
    • 2008
  • The rubber was compounded with carbon black and silica series-filler to examine the effects of the various rubber fillers on a gasket material's suitability and fuel cell stack conclusion. The evaluation of a long term heat resistance and oil resistance of the mixed rubber material was performed considering at the drive environment of PEMFC. Test results of compression set for the most influencing property of gasket showed that it was about less than 15% at long term of up to 1000 h. In this experiment, FEM analysis is carried out about the rubber material's properties depending on each filler and the stress which is produced when a gasket is contracted by using various filler. Sealing force was expected to maximum 2.5 MPa from minimum 0.2 MPa by using FEM (finite element method) at stacking gasket to gasket.

Advanced Synthetic Technology for High Performance Energy Tire Tread Rubber (고성능 에너지 절약형 타이어 트레드 고무의 합성 제조 기술)

  • Lee, Bum-Jae;Lim, Ki-Won;Ji, Sang-Chul;Jung, Kwon-Young;Kim, Tae-Jung
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.232-243
    • /
    • 2009
  • The specialized and diversified synthetic and compounding technologies are used to meet the requirements for the advanced high performance tire tread materials with better balance of fuel economy(rolling resistance), safety(wet traction) and wear resistance. These techniques involve the methodology for the improvement of chemical and physical interaction between filler and the rubber matrix using coupling agents as well as a variety of chemically-modified solution SBRs. The research trends about the high performance functional SBRs and coupling agents which can interact with the surface of fillers and their working mechanism were investigated in the conventional carbon black-filled rubber and silica-filled SBR systems developed recently as "green tire".

Effects of temperature on Hardness and Stiffness of NR and SBR Vulcanizates (NR과 SBR 가황물의 경도와 강성도 대한 온도의 영향)

  • Jin, Hyun-Ho;Hong, Chong-Kook;Cho, Dong-Lyun;Kaang, Shin-Young
    • Elastomers and Composites
    • /
    • v.42 no.3
    • /
    • pp.143-150
    • /
    • 2007
  • Hardness of rubbery materials, which is important for dimensional stability and product performance, was investigated upon temperature change in this study. A newly developed IRHD (International Rubber Hardness Degree) tester was used to measure the hardness changes of NR and SBR specimens at various temperatures and the hardness values were compared with the Young's modulus. The harness and Young's modulus of NR and SBR showed an abrupt change near the glass transition temperatures. The hardness and Young's modulus were increased by increasing temperature due to the increased random chain conformation of molecules. The effect of temperature on hardness and Young's modulus of NR and SBR specimens filled with carbon black and silica was decreased by increasing filler content.

Isolation and Purification of an Antitumor Metabolite from Alternaria brassicicola SW-3, the Cause of Brassica Black Leaf Spot Disease. (Phytopathogenic fungus Alternaria brassicicola SW-3가 생산하는 항암활성 물질의 분리 정제)

  • 나여정;이방숙;남궁성건;정동선
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.1
    • /
    • pp.51-56
    • /
    • 2002
  • An antitumor substance was purified from the culture filtrate of phytopathogenic fungus Alternaria brassicicola SW-3 isolated from soil of a chinese cabbage patch, and its characteristics were investigated. Antitumor activity of A. brassicicola SW-3 was measured by MTT assay. The cytotoxic activity against human cancer cell line was detected in the culture filtrate of A. brassicicola SW-3, but no activity found in mycelium. Antitumor substance was isolated from the culture broth by ethyl acetate extraction and purified by silica gel column chromatography. Structure of the purified compound was analyzed by the instrumental analysis such as $^1$H-NMR, $^{13}$ C-NMR and IR spectroscopy. The purified fungal metabolite of an A. brassicicola SW-3, consists of 11 carbon chain with two hydroxyl groups and two epoxides which is identical to depudecin. The $IC_{50}$/ values of the active compound identified as depudecin were $69\mu$g/mL and $57\mu$g/mL against mouse melanoma B16BL6 cell line, and human hepatoma SK-HEP1 cell line, respectively.