• Title/Summary/Keyword: Silanes

Search Result 68, Processing Time 0.02 seconds

Dehydrocoupling of Bis(1-sila-3-butyl)benzene and 2-Phenyl-1,3-disilapropane to Polymers Using Zirconocene Combination Catalysts

  • Lee, Jun;Kim, Jong-Hyun;Mo, Soo-Yong;Woo, Hee-Gweon;Kim, Do-Heyoung;Jun, Jin
    • Journal of Integrative Natural Science
    • /
    • v.4 no.3
    • /
    • pp.177-181
    • /
    • 2011
  • The catalytic dehydrocoupling of bis(1-sila-3-butyl)benzene 1 and 2-phenyl-1,3-disilapropane 2 by $Cp_2ZrCl_2$/Red-Al and $Cp_2ZrCl_2$/n-BuLi was reported to compare their catalytic efficiency. The dehydrocoupling of monomeric silanes 1 with the $Cp_2ZrCl_2$/Red-Al and $Cp_2ZrCl_2$/n-BuLi combination catalysts produced two phases of polymers: one is a highly cross-linked insoluble solid, and the other is noncross-linked or slightly cross-linked soluble oil and could be a precursor for the solid polymer. The dehydrocoupling of 2 with the $Cp_2ZrCl_2$/n-BuLi combination catalyst similarly produced two phases of polymers. By contrast, the catalytic reaction of 2 with the $Cp_2ZrCl_2$/Red-Al combination catalyst produced a soluble polymer via redistribution/dehydrocoupling process.

Amino Silane, Vinyl Silane, TESPD, ZS (TESPD/Zinc Complex) Effects on Carbon Black/Clay Filled Chlorobutyl Rubber (CIIR) Compounds Part III: Comparative Studies on Hard Clay and Soft Clay Filled Compounds

  • Kim, Kwang-Jea
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.190-197
    • /
    • 2009
  • Various silanes, amino silane, vinyl silane, sulfur silane (TESPD), and ZS (TESPD/zinc soap complex), are added into chlorinated isobutylene-isoprene copolymer (CIIR)/soft clay/carbon black (CB) and CIIR/hard clay/CB compounds and they are investigated with respect to the vulcanization characteristics, the processability, and the mechanical properties. Comparing hard clay and soft clay filled compounds, hard clay (Suprex) filled system shows a higher die C tear than the soft clay (GK) filled one. The other properties (Mooney, extrusion torque/pressure, torque rise ($M_H-M_L$), modulus at 300%) are close to each other. Among various silanes, the ZS treated hard clay (Suprex) compound shows the highest mechanical property following hard clay(S)/vinyl silane(V) and soft clay(GK)/vinyl silane(V) compounds. The TESPD and the ZS effectively helps a formation of a strong 3-dimensional network structure between silica and CIIR via coupling reaction due to bifunctional nature of TESPD. In addition to that, the ZS added compounds show both a better processability and mechanical properties compared to the S2 ones at low concentration due to improved compatibility between zinc soap and CIIR matrix. Only the ZS added compound shows both improved processabilities (Mooney, Extrusion torque-& pressure) and improved mechanical properties (degree of crosslinking, elongation modulus, tear, and fatigue to failure counts) on both CIIR/hard clay/CB and CIIR/soft clay/CB compounds.

Study on the surface modification of zirconia with hydrophilic silanes (친수성기를 가진 실란을 이용한 지르코니아의 표면의 개질 연구)

  • Lee, Soo;Moon, Sung Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.247-254
    • /
    • 2016
  • Since microzirconia has excellent thermal and mechanical properties with high chemical and electrical resistance, it can be used in various fields. When the surface of zirconia becomes hydrophilic, its dispersibility in water will be improved as well as the resistance to most hydrophobic contaminants will be increased. In this study, we investigated the introduction of a hydrophilic groups on the microzircornia surface through hydrolysis and condensation reactions with two different silanes containing hydrophilic functional groups, such as ${\gamma}$-aminopropyltrimethoxysilane (APS) and ${\gamma}$-ureidopropyltrimethoxysilane (UPS) at different pH and concentration conditions. A covalent bond formation between the surface hydroxyl groups of zirconia and that of hydrolyzed silanes was confirmed by ninhydrin test and FT-IR spectroscopy. However, the presence of Si on the surfaces of both silane modified microzirconias was unable to detect by SEM/EDS technique. In addition, particle size analysis results provide that the size of microzirconia was changed to smaller or bigger than that of original zirconia due to crushing and aggregation during the modification process. The water dispersibility was improved for only APS modifed zirconia (AS-2 and AS-3) under neutral pH condition, but the water dispersibility and stability for all cases of 0.5~2% UPS modifed zirconia (US series) were much improved.

Polyamine Group Assembled Silica Coated Ferrite Nanoparticle for Lambda DNA Detection

  • Park, Moo-Eon;Chang, Jeong-Ho
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1193-1194
    • /
    • 2006
  • The magnetic ferrite nanoparticles were synthesized and coated by silica precursor in controlling the coating thicknesses and sizeses. The surface modification was performed with amino-functionalized organic silanes on silica coated magnetic nanoparticles. The use of functionalized self-assembled magnetic ferrite nanoparticles for nucleic acid separation process give a lot of advantages rather than the conventional silica based process.

  • PDF

New Synthetic Method of Perfluoro-Silanes for the Stable Electrolyte of Lithium Ion Battery Application

  • Koh, Kyungkuk;Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.10 no.3
    • /
    • pp.171-174
    • /
    • 2017
  • Non-hydrolyzable fluorinated organosilicon compounds as an eletrolyte for the application of lithium-ion batteries (LIB) are synthesized. New synthetic method for the perfluorinated organosilicon compound containing spacer such as ethyl and propyl group with cyano moiety instead of ethylene glycol to prevent hydrolysis and to promote conductivity are developed in one pot reaction with moderately high yield. Air-sensitive boron trifluoride etherate is no longer required in this reaction. The products are characterized by spectroscopic analysis.

실란 개질제가 실리카충전고무 컴파운드에 미치는 영향

  • Kim, Gwang-Je
    • Rubber Technology
    • /
    • v.9 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • Effects of silane modifier, bis(triethoxysilylpropyl) tetrasulfide (TESPT(S4)) and bis(triethoxysilylpropyl) disulfide (TESPD(S2)), on silica filled compound were investigated upon processability, dynamic, mechanical, heat build-up, blowout properties, and silica dispersion in natural rubber (NR). The temperature of the S2 treated silica compound generated higher than that of the S4 treated compound during internal mixer compounding. The shear viscosity of the S2 compound exhibited lower than that of the S4 compound and the viscosity measured in dynamic mode was close to each other. The elongation modulus of the S2 compound exhibited lower than that of the S4; however, the tear resistance strength of the S2 compound exhibited higher than that of the S4 compound. The loss tan$\delta$ values of the S2 compound exhibited higher than those of the S4 at room temperature. The augmentation of the test temperature lowered the tan$\delta$ values of each compound, which results in close tan$\delta$ values to each other at $100^{\circ}C$. The S2 compound deformed less than the S4 compound, and the blowout time of each compound was close to each other. The S2 compound generated more heat build-up than the S4 compound. The abrasion loss of the S2 compound was less than that of the S4 compound. The size of the silica agglomerate reduced on both S4 and S2 compounds upon vulcanization. The addition of the bifunctional silanes (S2 and S4) on silica filled NR compound improved the processability of each compound and their effects were more significant on the S2 compound than the S4 compound. After vulcanization the silica agglomerate size of each compound reduced compared with before vulcanization.

  • PDF

Preparation of Polypropylene/Clay Nanocomposites Using Aminosilane Treated Clay (아미노실란 개질 클레이를 사용한 폴리프로필렌 클레이 나노복합재료)

  • Hong Chae-Hwan;Bae Jin-Woo;Lee Yong-Bum;Lee Choon-Soo;Jho Jae-Young;Nam Byeong-Uk
    • Polymer(Korea)
    • /
    • v.30 no.4
    • /
    • pp.318-325
    • /
    • 2006
  • Polypropylene-clay nanocomposites were studied by the modification of clay with amino silanes to introduce covalent bonds in nanocomposites, and prepared by melt-compounding with polypropylene, clay modified with amino silanes and maleic anhydride grafted polypropylene. The . .structure and surface properties of modified clay were determined by x-ray diffraction, infrared spectrum, and solid-state $^{29}Si$ nuclear magnetic resonance spectrum. The modification of clay with aminosilanes led to the increase of the silicate interlayers to about $19.8{\AA}$, the weakening effects of hydroxy group at $3650cm^{-1}$ and the signal of amine groups at -69 ppm proved that the modification had taken place.

Modification of glass fiber bundle with functionalized coupling agents and phenolic resin (기능성 커플링제와 페놀수지에 의한 유리섬유 다발의 표면개질 연구)

  • Lee, Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.168-175
    • /
    • 2016
  • The surface of glass fiber bundle was modified with functionalized silanes and phenolic resin to improve the tensile strength as well as the adhesion of glass fiber to matrix phenolic resin. The surface modification of reinforcing glass fiber can play a significant role in controlling whole composite characteristics. We applied surface modification of glass fiber with two different functionalized silanes, such as glycidyltrimethoxysilane(G-silane) and aminopropyltriethoxysilane (A-silane), and phenol formaldehyde(PF) resin in one pot or separated process under different coating compositions and temperatures. Thermal treatment temperature is very important factor to improve the mechanical properties of modified glass fiber. Modified glass fiber bundle treated at $170^{\circ}C$ showed the highest tensile strength of $10.05g_f/D$. Surface analyses by scanning electron microscope(SEM) and FT-IR spectroscopy were used to characterize the surface coatings on glass fiber bundles. Mechanical property changes as functions of treatment conditions and coupling agent types were also explained.

Influence of Reaction Conditions on the Grafting Pattern of 3-Glycidoxypropyl trimethoxysilane on Montmorillonite

  • He, Wentao;Yao, Yong;He, Min;Kai, Zhang;Long, Lijuan;Zhang, Minmin;Qin, Shuhao;Yu, Jie
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.112-116
    • /
    • 2013
  • Surface modification of montmorillonite (MMT) with 3-glycidoxypropyl trimethoxysilane (3GTO) in mild methanol/water mixture has been investigated in detail. The influence of reaction conditions (including silane concentration in feed, reaction time and reaction temperature) on the grafting amount and yield of silane, and further on the grafting pattern of silanes was studied by thermogravimetric analysis, elemental analysis, X-ray diffraction (XRD) and BET. Higher silane concentration, longer reaction time and higher reaction temperature are all benefit to higher grafting amount. When the grafting reaction was performed with 3 mmol/g silane concentration, at $90^{\circ}C$ for 24 h, the grafted amount and yield of silane reached 1.4443 mmol/g and 30%, respectively. Based on the XRD and BET data analysis, a speculation that the grafting pattern of silanes was concentration dependence was proposed.

폴리에스테르 바니시에서 나노 실리카의 분산성 향상과 나노 복합체 에나멜 와이어 개발

  • Kim, Yong-Beom;Kim, Eun-Jin;Kim, Seon-Jae;Hwang, Jong-Seon;Choe, Yong-Seong;Seo, Yeong-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.151-151
    • /
    • 2009
  • A enameled wire may have better corona-resistance when its coating material contains nano-sized inorganic particles. However, industrial applications are still limited because an aggregation between nanofillers may happen during coating processes. In this study we use a novel scheme of surface modification with silane on silica nanoparticles using sonochemical reaction where composition and surface density of silanes can be controlled in order to reduce particle-particle attractive interaction. Functionalized nanoparticles are evenly dispersed in the matrix confirmed by SEM and energy dispersive x-ray analysis. Dielectric strength and thermal resistance of the nanocomposite wires are improved while flexibility of the wire maintains.

  • PDF