• Title/Summary/Keyword: Signal-to-quantization noise ratio (SQNR)

Search Result 10, Processing Time 0.02 seconds

Analysis of Signal-to-Noise Ratio in High Field Multi-dimensional Magnetic Resonance Imaging (고자장 다차원 자기공명영상에서 신호대잡음비 분석)

  • Ahn, C.B.;Kim, H.J.;Chang, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2783-2785
    • /
    • 2003
  • In multi-dimensional magnetic resonance imaging, data is obtained in the spatial frequency domain. Since the signal variation in the spatial frequency domain is much larger than that in the spatial domain, analog-to-digital converts with wide conversion bits are required. In this paper, the quantization noise in magnetic resonance imaging is analyzed. The signal-to-quantization noise ratio(SQNR) in the reconstructed image is derived from the level of quantization in the data acquisition. Since the quantization noise is proportional to the signal amplitude, it becomes more dominant in high field imaging. Using the derived formula the SQNR for several MRI systems are evaluated, and it is shown that the quantization noise can be a limiting factor in high field imaging, especially in three dimensional imaging in magnetic resonance imaging.

  • PDF

A Study on the Quantization Noise in LDM and CFDM Systems (LDM방식과 CFDM방식의 양자화 잡음에 관한 연구)

  • 이문승
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.11 no.6
    • /
    • pp.411-420
    • /
    • 1986
  • Quantization noise of nonadaptive Linear Delta Modulation(LDM) and adaptive Constant Factor Delta Modulation(CFDM) systems is studied. The formulas for quantization noise of CFDM system are derived on the basis of the rusults of LDM. And the output signal-to-quantization noise ratios(SNR) in LDM and CFDM systems are calculated in the range of bit rates from 16[Kb/s] to 96[Kb/s]. By comparing LDM and CFDM, it is known that the adaptive DM is superior to non-adaptive DM by 8[dB] when bit rate is 20[Kb/s] and SNR advantage increases to 14[dB] when bit rate is 56[Kb/s]. All the theoretical results agree well with the experimental results.

  • PDF

2048-point Low-Complexity Pipelined FFT Processor based on Dynamic Scaling (동적 스케일링에 기반한 낮은 복잡도의 2048 포인트 파이프라인 FFT 프로세서)

  • Kim, Ji-Hoon
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.697-702
    • /
    • 2021
  • Fast Fourier Transform (FFT) is a major signal processing block being widely used. For long-point FFT processing, usually more than 1024 points, its low-complexity implementation becomes very important while retaining high SQNR (Signal-to-Quantization Noise Ratio). In this paper, we present a low-complexity FFT algorithm with a simple dynamic scaling scheme. For the 2048-point pipelined FFT processing, we can reduce the number of general multipliers by half compared to the well-known radix-2 algorithm. Also, the table size for twiddle factors is reduced to 35% and 53% compared to the radix-2 and radix-22 algorithms respectively, while achieving SQNR of more than 55dB without increasing the internal wordlength progressively.

Analysis of Quantization Noise in Magnetic Resonance Imaging Systems (자기공명영상 시스템의 양자화잡음 분석)

  • Ahn C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.8 no.1
    • /
    • pp.42-49
    • /
    • 2004
  • Purpose : The quantization noise in magnetic resonance imaging (MRI) systems is analyzed. The signal-to-quantization noise ratio (SQNR) in the reconstructed image is derived from the level of quantization in the signal in spatial frequency domain. Based on the derived formula, the SQNRs in various main magnetic fields with different receiver systems are evaluated. From the evaluation, the quantization noise could be a major noise source determining overall system signal-to-noise ratio (SNR) in high field MRI system. A few methods to reduce the quantization noise are suggested. Materials and methods : In Fourier imaging methods, spin density distribution is encoded by phase and frequency encoding gradients in such a way that it becomes a distribution in the spatial frequency domain. Thus the quantization noise in the spatial frequency domain is expressed in terms of the SQNR in the reconstructed image. The validity of the derived formula is confirmed by experiments and computer simulation. Results : Using the derived formula, the SQNRs in various main magnetic fields with various receiver systems are evaluated. Since the quantization noise is proportional to the signal amplitude, yet it cannot be reduced by simple signal averaging, it could be a serious problem in high field imaging. In many receiver systems employing analog-to-digital converters (ADC) of 16 bits/sample, the quantization noise could be a major noise source limiting overall system SNR, especially in a high field imaging. Conclusion : The field strength of MRI system keeps going higher for functional imaging and spectroscopy. In high field MRI system, signal amplitude becomes larger with more susceptibility effect and wider spectral separation. Since the quantization noise is proportional to the signal amplitude, if the conversion bits of the ADCs in the receiver system are not large enough, the increase of signal amplitude may not be fully utilized for the SNR enhancement due to the increase of the quantization noise. Evaluation of the SQNR for various systems using the formula shows that the quantization noise could be a major noise source limiting overall system SNR, especially in three dimensional imaging in a high field imaging. Oversampling and off-center sampling would be an alternative solution to reduce the quantization noise without replacement of the receiver system.

  • PDF

Efficient IFFT Design Using Mapping Method (Mapping 기법을 이용한 효율적인 IFFT 설계)

  • Jang, In-Gul;Kim, Yong-Eun;Chung, Jin-Gyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.11
    • /
    • pp.11-18
    • /
    • 2007
  • FFT(Fast Fourier Transform) processor is one of the key components in the implementation of OFDM systems such as WiBro, DAB and UWB systems. Most of the researches on the implementation of FFT processors have focused on reducing the complexities of multipliers, memory and control circuits. In this paper, to reduce the memory size required for IFFT(Inverse Fast Fourier Transform), we propose a new IFFT design method based on a mapping method. By simulations, it is shown that the reposed IFFT design method achieves more than 60% area reduction and much SQNR(Signal-to-Quantization-Noise Ratio) gain compared with previous IFFT circuits.

A 8192-point pipelined FFT/IFFT processor using two-step convergent block floating-point scaling technique (2단계 수렴 블록 부동점 스케일링 기법을 이용한 8192점 파이프라인 FFT/IFFT 프로세서)

  • 이승기;양대성;신경욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.10C
    • /
    • pp.963-972
    • /
    • 2002
  • An 8192-point pipelined FFT/IFFT processor core is designed, which can be used in multi-carrier modulation systems such as DUf-based VDSL modem and OFDM-based DVB system. In order to improve the signal-to-quantization-noise ratio (SQNR) of FFT/IFFT results, two-step convergent block floating-point (TS_CBFP) scaling is employed. Since the proposed TS_CBFP scaling does not require additional buffer memory, it reduces memory as much as about 80% when compared with conventional CBFP methods, resulting in area-and power-efficient implementation. The SQNR of about 60-㏈ is achieved with 10-bit input, 14-bit internal data and twiddle factors, and 16-bit output. The core synthesized using 0.25-$\mu\textrm{m}$ CMOS library has about 76,300 gates, 390K bits RAM, and twiddle factor ROM of 39K bits. Simulation results show that it can safely operate up to 50-㎒ clock frequency at 2.5-V supply, resulting that a 8192-point FFT/IFFT can be computed every 164-${\mu}\textrm{s}$. It was verified by Xilinx FPGA implementation.

A CMOS Band-Pass Delta Sigma Modulator and Power Amplifier for Class-S Amplifier Applications (S급 전력 증폭기 응용을 위한 CMOS 대역 통과델타 시그마 변조기 및 전력증폭기)

  • Lee, Yong-Hwan;Kim, Min-Woo;Kim, Chang-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.9-15
    • /
    • 2015
  • A CMOS band-pass delta-sigma modulator(BPDSM) and cascode class-E power amplifier have been developed CMOS for Class-S power amplifier applications. The BPDSM is operating at 1-GHz sampling frequency, which converts a 250-MHz sinusoidal signal to a pulse-width modulated digital signal without the quantization noise. The BPDSM shows a 25-dB SQNR(Signal to Quantization Noise Ratio) and consumes a power of 24 mW at an 1.2-V supply voltage. The class-E power amplifier exhibits an 18.1 dBm of the maximum output power with a 25% drain efficiency at a 3.3-V supply voltage. The BPDSM and class-E PA were fabricated in the Dongbu's 110-nm CMOS process.

Hybrid Commanding Delta Modulation with Silence Detection (묵음 검출 기능을 사용한 하이브리드 압신 델타 변조기)

  • 조동호;은종관
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.19 no.6
    • /
    • pp.84-90
    • /
    • 1982
  • In this paper we exploit the use of the intermittent property of speech to reduce the transmission rate or to increase signal-to-quantization noise ratio (SQNR) in coding speech by hybrid companding data modulation (HCDM). In this scheme we detect silence in speech by a speech/silence discriminator. HCDM coding is done only for speech portion. For silence that is detected in evert block of 5 ms, only the information indicating that the Since the HCDM coder transmits bina교 signal synchronously at a fixed rate, the use of a buffer and its efficient control is essential. By using the HCDM with silence detection in coding speech, we could improve SONR by as much as 6 dB over the conventional HCDM or reduce the transmission rate by one third of the HCDM rate.

  • PDF

Optimized Sigma-Delta Modulation Methodology for an Effective FM Waveform Generation in the Ultrasound System (효율적인 주파수 변조된 초음파 파형 발생을 위한 최적화된 시그마 델타 변조 기법)

  • Kim, Hak-Hyun;Han, Ho-San;Song, Tai-Kyong
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.429-440
    • /
    • 2007
  • A coded excitation has been studied to improve the performance for ultrasound imaging in term of SNR, imaging frame rate, contrast to tissue ratio, and so forth. However, it requires a complicated arbitrary waveform transmitter for each active channel that is typically composed of a multi-bit Digital-to-Analog Converter (DAC) and a linear power amplifier (LPA). Not only does the LPA increase the cost and size of a transmitter block, but it consumes much power, increasing the system complexity further and causing a heating-up problem. This paper proposes an optimized 1.5bit fourth order sigma-delta modulation technique applicable to design an efficient arbitrary waveform generator with greatly reduced power dissipation and hardware. The proposed SDM can provide a required SQNR with a low over-sampling ratio of 4. To this end, the loop coefficients are optimized to minimize the quantization noise power in signal band while maintaining system stability. In addition, the decision level for the 1.5 bit quantizer is optimized for a given input waveform, which results in the SQNR improvement of more than 5dB. Computer simulation results show that the SQNR of a FM(frequency modulated) signal generated by using the proposed method is about 26dB, and the peak side-lobe level (PSL) of its compressed waveform on receive is -48dB.

A Design of 8192-point FFT Processor using a new CBFP Scaling Method (새로운 CBFP 스케일링 방법을 적용한 8192점 FFT프로세서 설계)

  • 이승기;양대성;박광호;신경욱
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.113-116
    • /
    • 2002
  • This paper describes a design of 8192-Point pipelined FFT/IFFT processor (PFFTSk) core for DVB-T and DMT-based VBSL modems. A novel two-step convergent block floating -point (75_CBFP) scaling method is proposed to improve the signal- to-quantization-noise ratio (SeNR) of FFT/IFFT results. Our approach reduces about 80% of memory when compared with conventional CBFP methods. The PFFTSk core, which is designed in VHDL and synthesized using 0.25-${\mu}{\textrm}{m}$ CMOS library, has about 76,300 gates, 390k bits RAM, and Twiddle factor ROM of 39k bits. Simulation results show that it can safely operate up to 50-MHz clock frequency at 2.5-V supply, resulting that a 8192-point FFT/IFFT can be computed every 164-$mutextrm{s}$. The SQNR of about 60-dB is achieved.

  • PDF