• Title/Summary/Keyword: Signal-to-Noise Ratio Enhancement

Search Result 171, Processing Time 0.026 seconds

Study on the Datarate Enhancement of European Digital Radio System (유럽 디지털 라디오 시스템의 전송률 향상에 관한 연구)

  • Park, Kyung-Won;Kim, Sung-Jun;Song, Byoung-Chul;Lee, Kyung-Taek
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.178-180
    • /
    • 2012
  • 본 논문에서는 유럽의 디지털 라디오 전송 규격인 DRM(Digital Radio Mondiale)의 Band II 대역 전송 모드인 모드 E의 전송률 향상 기법을 제안한다. DRM 모드 E는 FM 방송과의 동시방송 등의 문제를 고려하여 100kHz 대역폭에서 186kbps의 전송률을 제공한다. 하지만, 이 전송률은 모바일TV 등 멀티미디어 서비스를 제공하기 위해서는 부족하기 때문에 전송률의 향상이 요구된다. 논문에 제안된 전송률 향상기법은 기존의 DRM 모드에 변조방식 및 부호방식을 추가하는 방식으로 최대 350kbps의 전송률 제공이 가능하며, FAC(Fast Access Channel)의 예약필드에 신규 방식에 대한 정보를 전송함으로써 기존 시스템과 호환성을 유지할 수 있다. 모의실험 결과에서, AWGN(Additive White Gaussian Noise) 채널의 비트오류율 le-4를 기준으로 223kbps의 전송을 위해서는 13dB의 SNR(Signal-to-Noise Ratio)이 요구되며, 351kbps의 전송률 제공을 위해서는 약 18dB의 SNR이 요구됨을 확인할 수 있다. 또한, 다중경로 페이딩 채널환경에서 부호율이 1/2인 경우에는 이동속도보다는 지연확산이 성능에 영향을 주지만, 부호율이 1/2 보다 크며 150Km/h이상 증가하면 오류마루가 발생함을 확인할 수 있다.

  • PDF

Dynamic MR Imaging in Gastric Cancer : Comparison Between Precontrast and Postcontrast Images (위암의 역동적 자기공명영상: 조영증강 전 후 영상의 비교)

  • 홍성환;한준구;장기현;최병인
    • Investigative Magnetic Resonance Imaging
    • /
    • v.1 no.1
    • /
    • pp.130-134
    • /
    • 1997
  • Purpose: To analyze contrast-enhancement pattern of stomach cancer on dynamic MRI and to verify the efficacy of intravenous contrast agent in the evaluation of stomach cancer. Materials and Methods: Twelve patients with proven stomach cancer underwent dynamic MRI. By using l.OT scanner, we obtained precontrast FLASH images, and 30, 60, 90 second delay FLASH images after intravenous contrast injection. All patients ingested one liter of water and had intramuscular injection of Buscopan just before MR study. For quantitative analysis we measured signal to noise ratio (SiN) of stomach cancer on each image, and signal difference to noise ratio (SD/N) between cancer and intraluminal fluid, cancer and the pancreas. For qualitative analysis two radiologists evaluated lesion conspicuity on each image by grading system(grade 0, 1, 2, 3: poor, fair, good, excellent). Results: SiN of stomach cancer increased gradually by time(precontrast, 30, 60, 90 second delay: 38.7, 42.5, 57.4, 65.7). SD/N between cancer and intraluminal fluid significantly increased after contrast enhancement(l.24, 25.01, 39.30, 45.89). SD/Ns between cancer and the pancreas were 10.5, 9.33, 9.99, 10.66, respectively. In qualitative analysis, precontrast images were better than postcontrast images for delineation of stomach cancer. Postcontrast images showed clear endo-Iuminal side of stomach cancer, but outer margin of stomach cancer was more distinct on precontrast images. Conclusion: Precontrast MR images are better than postcontrast MR images in the depiction of stomach cancer. Intravenous contrast agent is not imperative in the evaluation of stomach cancer.

  • PDF

An Adaptive Adjacent Cell Interference Mitigation Method for Eigen-Beamforming Transmission in Downlink Cellular Systems (하향 링크 셀룰러 시스템의 Eigen-Beamforming 전송을 위한 적응적 인접 셀 간섭 완화 방법)

  • Chang, Jae-Won;Kim, Se-Jin;Kim, Jae-Won;Sung, Won-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.3
    • /
    • pp.248-256
    • /
    • 2009
  • EB(Eigen-Beamforming) has widely been applied to MIMO(Multiple-Input Multiple-Output) systems to form beams which maximize the effective signal-to-interference plus noise ratio(SINR) of the receiver using the singular value decomposition(SVD) of the MIMO channel. However, the signal detection performance for the mobile station near the cell boundary is severely degraded and the transmission efficiency decreases due to the influence of the interference signal from the adjacent cells. In this paper, we propose an adaptive interference mitigation method for the EB transmission, and evaluate the reception performance. In particular, a reception strategy which adaptively utilizes optimal combining(OC) and minimum mean-squared error for Intercell spatial demultiplexing(MMSE-lSD) is proposed, and the reception performance is investigated in terms of the effective SINR and system capacity. For the average system capacity, the proposed adaptive reception demonstrates the performance enhancement compared to the conventional EB reception using the receiver beamforming vector, and up to 2 bps/Hz performance gain is achieved for mobile station located at the cell edge.

Gadolinium Complexes of Bifunctional Diethylenetriaminepentaacetic Acid (DTPA)-bis(amides) as Copper Responsive Smart Magnetic Resonance Imaging Contrast Agents (MRI CAs)

  • Nam, Ki Soo;Park, Ji-Ae;Jung, Ki-Hye;Chang, Yongmin;Kim, Tae-Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2900-2904
    • /
    • 2013
  • We present the synthesis and characterization of DTPA-bis(histidylamide) (1a), DTPA-bis(aspartamide) (1b), and their gadolinium complexes of the type $[Gd(L)(H_2O)]$ (2a:L = 1a; 2b:L = 1b). Thermodynamic stabilities and $R_1$ relaxivities of 2a-b compare well with Omniscan$^{(R)}$, a well-known commercial, extracellular (ECF) MRI CA which adopts the DTPA-bis(amide) framework for the chelate: $R_1$ = 5.5 and 5.1 $mM^{-1}$ for 2a and 2b, respectively. Addition of the Cu(II) ion to a solution containing 2b triggers relaxivity enhancement to raise $R_1$ as high as 15.3 $mM^{-1}$, which corresponds to a 300% enhancement. Such an increase levels off at the concentration beyond two equiv. of Cu(II), suggesting the formation of a trimetallic ($Gd/Cu_2$) complex in situ. Such a relaxivity increase is almost negligible with Zn(II) and other endogenous ions such as Na(I), K(I), Mg(II), and Ca(II). In vivo MR images and the signal-to-noise ratio (SNR) obtained with an aqueous mixture of 2b and Cu(II) ion in an 1:2 ratio demonstrate the potentiality of 2 as a copper responsive MRI CA.

A Short Seismic Reflection Survey for Delineating the Basement and the Upper Units of the Gomso Bay, Yellow Sea (곰소만 지역의 기반암 및 상부 층서 파악을 위한 시험 탄성파반사법 탐사)

  • Kim Ji-Soo;Ryang Woo-Hun;Han Soo-Hyung;Kim Hak-Soo
    • The Journal of Engineering Geology
    • /
    • v.16 no.2 s.48
    • /
    • pp.161-169
    • /
    • 2006
  • A short seismic reflection survey was performed to map the basement and the upper units in the Gomso Bay. This research was mainly aimed at clarifying the basement by improving the signal-to-noise ratio in data processing steps. The strategies employed in this research included enhancement of the signal interfered with large-amplitude noise, through pre- and post-stack processing such as time-variant filtering, bad trace edit, careful muting after f-k filter and NMO correction. The subsurface structure mapped from this survey mainly consists of the top of basement and the upper three units, which were well correlated to the result from the previously conducted MT survey. Furthermore seismic section clarifies approximately 30m deep subhorizontal event of the top of the basement, which was not shown in the central portion of the MT section due to data qualify.

Performance Analysis of Adaptive Cooperation Scheme with Decode-and-Forward (적응형 복호 후 전달 협력 통신의 성능 분석)

  • Vu, Ha Nguyen;Kong, Hyung-Yun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.82-88
    • /
    • 2009
  • An adaptive cooperation system is considered with the cooperation decision strategy based on the differences between instantaneous signal-to-noise ratio (SNR) S-D and R-D channels. Specifically, if the quality of the direct link (S-D) is better than that of the link from the relay to the destination (R-D), the source will transmit to destination directly with all scheme's transmitted power. Otherwise, the source broadcasts the signal with a lower power in the first time slot. Then, in the second time slot, if the relay decodes its received signal correctly, it re-transmits the re-encoded signal to the destination else the source will transmit again with the remaining power. Firstly, the spectral efficiency is derived by calculating the probabilities of direct transmission and cooperation mode. Subsequently, the BER performance for the adaptive cooperation schemes is analyzed by considering the BER routine of each mode. Finally, the Monte-Carlo simulation results are presented to confirm the performance enhancement offered by the proposed schemes.

Quantitative Assessment using SNR and CNR in Cerebrovascular Diseases : Focusing on FRE-MRA, CTA Imaging Method (뇌혈관 질환에서 신호대 잡음비와 대조도대 잡음비를 이용한 정량적평가 : FRE-MRA, CTA 영상기법중심으로)

  • Goo, Eun-Hoe
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.6
    • /
    • pp.493-500
    • /
    • 2017
  • In this study, data analysis has been conducted by INFINITT program to analyze the effect of signal to noise ratio(SNR) and contrast to noise ratio(CNR) of flow related enhancement(FRE) and computed tomography Angiography(CTA) on cerebrovascular diseases for qualitative evaluations. Based on the cerebrovascular image results achieved from 63 patients (January to April, 2017, at C University Hospital), we have selected 19 patients that performed both FRE-MRA and CTA. From the 19 patients, 2 were excluded due to artifacts from movements in the cerebrovascular image results. For the analysis conditions, we have set the 5 part (anterior cerebral artery, right and left Middle cerebral artery, right and left Posterior cerebral artery) as the interest area to evaluate the SNR and CNR, and the results were validated through Independence t Test. As a result, by averaging the SNR, and CNR values, the corresponding FRE-MRA achieved were: anterior cerebral artery ($1500.73{\pm}12.23/970.43{\pm}14.55$), right middle cerebral artery ($1470.16{\pm}11.46/919.44{\pm}13.29$), left middle cerebral artery ($1457.48{\pm}17.11/903.96{\pm}14.53$), right posterior cerebral artery ($1385.83{\pm}16.52/852.11{\pm}14.58$), left posterior cerebral artery ($1318.52{\pm}13.49/756.21{\pm}10.88$). by averaging the SNR, and CNR values, the corresponding CTA achieved were: anterior cerebral artery ($159.95{\pm}12.23/123.36{\pm}11.78$), right middle cerebral artery ($236.66{\pm}17.52/202.37{\pm}15.20$), left middle cerebral artery ($224.85{\pm}13.45/193.14{\pm}11.88$), right posterior cerebral artery ($183.65{\pm}13.47/151.44{\pm}11.48$), left posterior cerebral artery ($177.7{\pm}16.72/144.71{\pm}11.43$) (p < 0.05). In conclusion, MRA had high SNR and CNR value regardless of the cerebral infarction or cerebral hemorrhage observed in the 5 part of the brain. Although FRE-MRA consumed longer time, it proved to have less side effect of contrast media when compared to the CTA.

PSNR Enhancement in Image Streaming over Cognitive Radio Sensor Networks

  • Bahaghighat, Mahdi;Motamedi, Seyed Ahmad
    • ETRI Journal
    • /
    • v.39 no.5
    • /
    • pp.683-694
    • /
    • 2017
  • Several studies have focused on multimedia transmission over wireless sensor networks (WSNs). In this paper, we propose a comprehensive and robust model to transmit images over cognitive radio WSNs (CRWSNs). We estimate the spectrum sensing frequency and evaluate its impact on the peak signal-to-noise ratio (PSNR). To enhance the PSNR, we attempt to maximize the number of pixels delivered to the receiver. To increase the probability of successful image transmission within the maximum allowed time, we minimize the average number of packets remaining in the send buffer. We use both single- and multi-channel transmissions by focusing on critical transmission events, namely hand-off (HO), No-HO, and timeout events. We deploy our advanced updating method, the dynamic parameter updating procedure, to guarantee the dynamic adaptation of model parameters to the events. In addition, we introduce our ranking method, named minimum remaining packet best channel selection, to enable us to rank and select the best channel to improve the system performance. Finally, we show the capability of our proposed image scrambling and filtering approach to achieve noticeable PSNR improvement.

A Divide-Conquer U-Net Based High-Quality Ultrasound Image Reconstruction Using Paired Dataset (짝지어진 데이터셋을 이용한 분할-정복 U-net 기반 고화질 초음파 영상 복원)

  • Minha Yoo;Chi Young Ahn
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.118-127
    • /
    • 2024
  • Commonly deep learning methods for enhancing the quality of medical images use unpaired dataset due to the impracticality of acquiring paired dataset through commercial imaging system. In this paper, we propose a supervised learning method to enhance the quality of ultrasound images. The U-net model is designed by incorporating a divide-and-conquer approach that divides and processes an image into four parts to overcome data shortage and shorten the learning time. The proposed model is trained using paired dataset consisting of 828 pairs of low-quality and high-quality images with a resolution of 512x512 pixels obtained by varying the number of channels for the same subject. Out of a total of 828 pairs of images, 684 pairs are used as the training dataset, while the remaining 144 pairs served as the test dataset. In the test results, the average Mean Squared Error (MSE) was reduced from 87.6884 in the low-quality images to 45.5108 in the restored images. Additionally, the average Peak Signal-to-Noise Ratio (PSNR) was improved from 28.7550 to 31.8063, and the average Structural Similarity Index (SSIM) was increased from 0.4755 to 0.8511, demonstrating significant enhancements in image quality.

PHASE-EXTENST10N INVERSE FILTERING ON REAL SAR IMAGES (실제 SAR 영상에 대한 위상 확장 역필터링의 적용)

  • Do, Dae-Won;Song, Woo-Jin;Kwon, Jun-Chan
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.547-550
    • /
    • 2001
  • Through matched filtering synthetic aperture radar (SAR) produces high-resolution imagery from data collected by a relative small antenna. While the impulse response obtained by the matched filter approach produces the best achievable signal-to-noise ratio, large sidelobes must be reduced to obtain higher-resolution SAR images. So, many enhancement methods of SAR imagery have been proposed. As a deconvolution method, the phase-extension inverse filtering is based on the characteristics of the matched filtering used in SAR imaging. It improves spatial resolution as well as effectively suppresses the sidelobes with low computational complexity. In the phase-extension inverse filtering, the impulse response is obtained from simulation with a point target. But in a real SAR environment, for example ERS-1, the impulse response is distorted by many non-ideal factors. So, in the phase-extension inverse filtering for a real SAR processing, the magnitudes of the frequency transfer function have to be compensated to produce more desirable results. In this paper, an estimation method to obtain a more accurate impulse response from a real SAR image is studied. And a compensation scheme to produce better performance of the phase-extension inverse filtering is also introduced.

  • PDF