• Title/Summary/Keyword: Signal-to-Interference and Noise Ratio

Search Result 446, Processing Time 0.025 seconds

Design of the Magnetic Field Sensing System for Downlink Signal Reception and Interference Cancelling for Through-the-Earth Communication

  • Zhao, Peng;Jiang, Yu-zhong;Zhang, Shu-xia;Ying, Wen-wei
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.330-339
    • /
    • 2016
  • A magnetic field sensing system with a single primary sensor and multiple reference sensors deployed locally and orthogonally, was proposed for downlink signal reception and interference cancelling for Through-the-Earth Communication (TEC). This paper mathematically analyzes a design optimization process for a search coil magnetometer (SCM), and applies that process to minimize the bandwidth of the primary SCM for TEC signal reception and the volume of reference SCMs for multiple distributions. The primary SCM achieves a 3-dB bandwidth of 7 Hz, a sensitivity threshold of 120 fT/${\surd}$Hz, and a volume of $2.32{\times}10^{-4}m^3$. The entire sensing system volume is as small as $10^{-2}m^3$. Experiments with interference from industrial frequency harmonics demonstrated an average of 36 dB and 18 dB improvements in signal-to-interference ratio and signal-to-interference plus noise ratio, respectively, using multichannel recursive-least-squares algorithm. Thus, the proposed sensing system can reduce the interference effectively and allows reliable downlink signal reception.

Real-time 14N NQR-based sodium nitrite analysis in a noisy field

  • Mohammad Saleh Sharifi;Ho Seung Song;Hossein Afarideh;Mitra Ghergherehchi;Mehdi Simiari
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4570-4575
    • /
    • 2023
  • Noise and Radio-frequency interference or RFI causes a significant restriction on the Free induction Decay or FID signal detection of the Nuclear Quadrupole Resonance procedure. Therefore, using this method in non-isolated environments such as industry and ports requires extraordinary measures. For this purpose, noise reduction algorithms and increasing signal-to-noise-and-interference ratio or SNIR have been used. In this research, sodium nitrite has been used as a sample and algorithms have been tested in a non-isolated environment. The resonant frequencies for the 150 g of test sample were measured at 303 K at about 1 MHz and 3.4 MHz. The main novelty in this study was, (1) using two types of antennas in the receiver to improve adaptive noise and interference cancellation, (2) using a separate helical antenna in the transmitter to eliminate the duplexer, (3) estimating the noise before sending the pulse to calculate the weighting factors and reduce the noise by adaptive noise cancellation, (3) reject the interference by blanking algorithm, (4) pulse integration in the frequency domain to increase the SNR, and (5) increasing the detection speed by new pulse integration technique. By interference rejection and noise cancellation, the SNIR is improved to 9.24 dB at 1 MHz and to 7.28 dB at 3.4 MHz, and by pulse integration 44.8 dB FID signal amplification is achieved, and the FID signals are detected at 1.057 MHz and 3.402 MHz at room temperature.

An Inter-Cell Interference Estimation Algorithm for Cellular OFDMA Systems (셀률러 OFDMA 시스템을 위한 셀간 간섭추정 알고리즘)

  • Rim, Min-Joong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.10 s.352
    • /
    • pp.55-59
    • /
    • 2006
  • In cellular OFDMA(Orthogonal Frequency Division Multiple Access) systems, each subcarrier may suffer from different amount of interferences from neighbor cells. Suppose that it is possible to accurately estimate inter-cell interferences for each subcarrier, the performance can be considerably improved by applying SINR(Signal to Interference and Noise Ratio) weighting. This paper proposes an inter-cell interference estimation method for cellular OFDMA systems. The proposed method extracts amounts of noise and interferencesby eliminating the channel variation effects of pilot symbols caused by frequency offset, timing offset mobile velocity, and delay spread.

A Study on Performance Analysis for Terrestrial Cloud Transmission Systems (지상파 클라우드 방송 시스템의 성능 분석 연구)

  • Kim, Jeongchang;Park, Sung Ik;Kim, Heung Mook
    • Journal of Broadcast Engineering
    • /
    • v.20 no.2
    • /
    • pp.248-256
    • /
    • 2015
  • In this paper, we model the interference plus noise signal for terrestrial cloud transmission systems and present bit error rate (BER) performances. Since terrestrial cloud transmission systems experience co-channel interference from one or more transmitters, they have to operate under a negative signal-to-interference plus noise ratio (SINR) region. The interference plus noise signal can be modeled as Gaussian random variable under the required SINR region and we observe the BER performance of the cloud transmission system using the derived model. Also, we propose an improved channel estimation scheme by averaging the channel estimates based on least square based interpolation scheme. Simulation results show that the cloud transmission system can operate under negative SINR region using the proposed channel estimation scheme.

QAM Error Performance in the Environment of Cochannel Interference and Impulsive Noise (동일채널간섭 및 임펄스잡음 환경하에서의 QAM신호의 오율특성)

  • 제종원;공병옥;조성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.7 no.4
    • /
    • pp.167-172
    • /
    • 1982
  • We have studied and discussed the error rate performance of Quadrature Amplitude Modulation(QAM) in an environment of cochannel QAM interference and impulsive noise. A general equation of error probability for L-level QAM signal has been derived and the error rate of the 16-QAM signal, as an example, has been calculated as functions of carrier-to-noise power ratio(CNR), carrier-to-interferer power ratio(CIR), impulsive indes, and the phase difference between signal and interferer.

  • PDF

Communication-Theoretic Analysis of Capture-Based Networks

  • Nguyen, Gam D.;Wieselthier, Jeffrey E.;Ephremides, Anthony
    • Journal of Communications and Networks
    • /
    • v.14 no.3
    • /
    • pp.243-251
    • /
    • 2012
  • Under the power-based capture model, a transmission is successfully received at the destination, even in the presence of other transmissions and background noise, if the received signal-to-interference-plus-noise ratio exceeds a capture threshold. We evaluate the spectral efficiency of simple multi-user channels by combining the basic capture model with a communication-theoretic model. The result is a more refined capture model that incorporates key system design parameters (such as achievable bit rate, target bit error rate, channel bandwidth, and modulation signal constellations) that are absent from the basic capture model. The relationships among these parameters can serve as a tool for optimizing the network performance.

Signal to Noise Improvement in Optical Wireless Interconnection Using A Differential Detector (차동검출기를 이용한 무선광연결에서 신호대잡음비의 개선)

  • 이성호;강희창
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.1
    • /
    • pp.54-62
    • /
    • 1999
  • In this paper, we investigated the signal-to-noise ratio improvement in a differential detector, which is a function of the optical noise coupling ratio and the differential gain ratio. A differential detector consists of two photodiodes and a differential amplifier. The differential detector reduced the noise component and improved the signal-to-noise ratio by about 20 dB when the differential gain ratio equals to the optical noise coupling ratio. The differential detector is very effective in removing the environmental optical noise or interference from an adjacent optical channel. This method is also effective when the noise wavelength is similar to the signal.

  • PDF

Interference Analysis Between LEO Satellites for X-band Downlink (저궤도 위성 간 X-대역 하향링크에서의 간섭 영향성 분석)

  • Choo, Moogoong;Hwang, Inyoung;Bae, Minji;Seo, Inho;Ryu, Youngjae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.6
    • /
    • pp.489-496
    • /
    • 2021
  • The X-band frequencies for transmitting the data from earth observation satellites are limited, so a number of satellites share the frequency bands. In order for multiple satellites to utilize same or adjacent frequency bands, International Telecommunication Union - Radiocommunication (ITU-R) limits power flux density (PFD), which overcomes the interferences among multiple satellites. However, even under the regulation, the interference effect needs to be analyzed when multiple satellites are connected to communicate with multiple ground stations (GSs) located close to each other. In this paper, the interference effect is analyzed based on signal to interference plus noise ratio (SINR) when two low earth orbit (LEO) satellites operating in different orbits are connected to communicate with randomly located two GSs in Korean peninsula. From the analysis results, it is confirmed that there can be interferences during 365 days operation even if the satellites meet PFD requirement, but the periods under interference effects are short and the interference can be foreseen.

Joint Subcarrier and Bit Allocation for Secondary User with Primary Users' Cooperation

  • Xu, Xiaorong;Yao, Yu-Dong;Hu, Sanqing;Yao, Yingbiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3037-3054
    • /
    • 2013
  • Interference between primary user (PU) and secondary user (SU) transceivers should be mitigated in order to implement underlay spectrum sharing in cognitive radio networks (CRN). Considering this scenario, an improved joint subcarrier and bit allocation scheme for cognitive user with primary users' cooperation (PU Coop) in CRN is proposed. In this scheme, the optimization problem is formulated to minimize the average interference power level at the PU receiver via PU Coop, which guarantees a higher primary signal to interference plus noise ratio (SINR) while maintaining the secondary user total rate constraint. The joint optimal scheme is separated into subcarrier allocation and bit assignment in each subcarrier via arith-metric geo-metric (AM-GM) inequality with asymptotical optimization solution. Moreover, the joint subcarrier and bit optimization scheme, which is evaluated by the available SU subcarriers and the allocated bits, is analyzed in the proposed PU Coop model. The performance of cognitive spectral efficiency and the average interference power level are investigated. Numerical analysis indicates that the SU's spectral efficiency increases significantly compared with the PU non-cooperation scenario. Moreover, the interference power level decreases dramatically for the proposed scheme compared with the traditional Hughes-Hartogs bit allocation scheme.

A Linear Prediction Based Estimation of Signal-to-Noise Ratio in AWGN Channel

  • Kamel, Nidal S.;Jeoti, Varun
    • ETRI Journal
    • /
    • v.29 no.5
    • /
    • pp.607-613
    • /
    • 2007
  • Most signal-to-noise ratio (SNR) estimation techniques in digital communication channels derive the SNR estimates solely from samples of the received signal after the matched filter. They are based on symbol SNR and assume perfect synchronization and intersymbol interference (ISI)-free symbols. In severe channel distortion where ISI is significant, the performance of these estimators badly deteriorates. We propose an SNR estimator which can operate on data samples collected at the front-end of a receiver or at the input to the decision device. This will relax the restrictions over channel distortions and help extend the application of SNR estimators beyond system monitoring. The proposed estimator uses the characteristics of the second order moments of the additive white Gaussian noise digital communication channel and a linear predictor based on the modified-covariance algorithm in estimating the SNR value. The performance of the proposed technique is investigated and compared with other in-service SNR estimators in digital communication channels. The simulated performance is also compared to the Cram$\acute{e}$r-Rao bound as derived at the input of the decision circuit.

  • PDF