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Most signal-to-noise ratio (SNR) estimation techniques 
in digital communication channels derive the SNR 
estimates solely from samples of the received signal after 
the matched filter. They are based on symbol SNR and 
assume perfect synchronization and intersymbol 
interference (ISI)-free symbols. In severe channel 
distortion where ISI is significant, the performance of 
these estimators badly deteriorates. We propose an SNR 
estimator which can operate on data samples collected at 
the front-end of a receiver or at the input to the decision 
device. This will relax the restrictions over channel 
distortions and help extend the application of SNR 
estimators beyond system monitoring. The proposed 
estimator uses the characteristics of the second order 
moments of the additive white Gaussian noise digital 
communication channel and a linear predictor based on 
the modified-covariance algorithm in estimating the SNR 
value.  The performance of the proposed technique is 
investigated and compared with other in-service SNR 
estimators in digital communication channels. The 
simulated performance is also compared to the Cramér-
Rao bound as derived at the input of the decision circuit. 
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I. Introduction 

A good signal-to-noise ratio (SNR) estimation technique in 
communication systems is needed since various receiver 
optimization algorithms require knowledge of the SNR for 
optimal performance if the SNR is time-varying [1], [2]. The 
performance of such communication systems can be improved 
if accurate SNR-estimates are available.  

Many SNR estimators in digital communication channels 
have been proposed over the last few decades [3]. Most of 
these techniques derive the symbol SNR estimates solely from 
the received signal at the output of the matched filter (MF). The 
estimators assume perfect carrier and symbol synchronization 
while at the same time implicitly assuming intersymbol 
interference (ISI)-free output of the MF (the decision variable). 
However, in practice, multipath wireless communication gives 
rise to much intersymbol interference, especially in indoor and 
urban areas. In these ISI dominated scenarios, SNR estimators 
that do not presume ISI-free reception are highly desirable.  

In this paper, an in-service SNR estimation technique in digital 
communication channels is presented. In contrast to other SNR 
estimators, the proposed technique can operate on data collected 
at the front-end of the receiver without any restriction on ISI. 
This will improve the SNR estimates in severe ISI channels and 
also help in extending the implementation of SNR estimators in 
systems that require SNR estimates at the input of the receiver. 
One such application is antenna diversity combining, where at 
least two antenna signal paths are communicably connected to a 
receiver. The combiner can use the SNR estimates obtained for 
each antenna signal to respectively weight each signal and 
thereby generate a combined output signal. 

The proposed technique depends on the characteristics of the 
second-order moments of the additive white Gaussian noise 
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(AWGN) digital communication channel in estimating the SNR 
value. A linear predictor with coefficients obtained using the 
modified-covariance algorithm is used to find the power of the 
AWGN noise and the SNR value. 

The remainder of the paper is organized as follows. Section 
II provides a brief introduction to the popular in-service 
estimators, such as squared signal-to-noise variance (SNV), 
second- and fourth-order moment (M2M4), and signal-to-
variation ratio (SVR) estimators. Section III, introduces the 
proposed technique based on linear prediction, and section IV 
compares the relative performance of all the techniques. 
Section V concludes the paper. 

To make the presentation as clear as possible, attempt has 
been made to adhere to a somewhat standard notational 
convention. Lower case boldface characters will generally refer 
to vectors, upper case boldface characters will generally refer to 
matrices, and (.)H will be used to denote the Hermitian 
conjugate (or complex-conjugate transpose) operation. 
Occasionally, conjugation is required without transposition and 
vice-versa, and for those operations, (.)* (conjugation) and (.)T 
(transposition) are used. 

II. Popular In-Service SNR Estimators in AWGN 
Channels 

In this section, we outline three SNR estimators which are 
widely recognized as the best among the in-service techniques 
that operate on one sample per symbol. The SNR of interest is 
the ratio of the discrete signal power to the discrete noise power 
at the input to the decision device at the optimal sampling 
instances.  

A block of Nsym M-ary source symbols is pulse-shaped by a 
root raised-cosine (RRC) filter, scaled by a constant attenuation 
factor, and corrupted by sampled, complex AWGN. The 
sequence of M-ary source symbols is represented by 

{ },  n 0,1, 2, , 1 ,            nj
n syma e Nθ= ∈ −L        (1) 

where θn is one of M phases spaced evenly around the unit 
circle. The pulse-shaped information signal is given by 

k n k n
n

m a h −= ∑ ,                (2) 

where hk represents the RRC filter tap coefficients. The signal 
presented to the receiver is 

 k k kr s m N z= + ,               (3) 

where zk is the complex, sampled, zero-mean AWGN of unit 
variance, S is a signal power scale factor, and N is a noise 
power scale factor. The samples of the received signal after the 

MF can be expressed as 

0n k k nNss n ny y S a g N w== = + ,         (4) 

where go is the peak of the full raised-cosine impulse response, 
and wn represents the symbol-spaced, filtered samples. 

In analyzing various in-service SNR estimators, (4) is used 
as the data model at the input to the decision device. 

1. Squared SNV Estimator 

This in-service SNR estimator is based on the first absolute 
moment and the second moment of the sampled output of the 
MF. It was introduced by Gilchriest, in 1966, for binary phase-
shift keying (BPSK) signal in real AWGN [4]. The SNV 
estimator, as given in [4] for BPSK in real AWGN, is 
expressed in terms of the sampled output of the MF as 
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2. Second- and Fourth-Order Moments (M2M4) Estimator 

An early mention of the application of second- and fourth-
order moments to the separate estimation of carrier strength 
and noise strength in real AWGN channels was made in 1967 
by Benedict and Soong [5]. In 1994, Matzner and Engleberger 
[6] gave a detailed derivation of the estimator for real signals. 
In 2000, Pauluzzi and Beaulieu extended the derivation of the 
M2M4 to complex AWGN channels [3].  

The derivation provided in [3] for complex channels may be 
sketched as follows. 

Let M2 denote the second moment of yn as 
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and let M4 denote the fourth moment of yn as 

( ){ }
{ } { } { }( )

( ){ } { } ( ){ }( )
{ }( ) { }

2

4

4 2 22

2 22 2

2 2 42

    2

       + 4

      +2 ,

E

E E E

E E E

E E E

n n

n n n n n n n

n n n n n n

n n n n n n n

M y y

S a S SN a a w a a w

SN a w a w a w

N SN w a w w a w N w

∗

∗ ∗

∗ ∗

∗ ∗

=

= + ⋅ +

+ +

+ +

 (7) 



ETRI Journal, Volume 29, Number 5, October 2007 Nidal S. Kamel et al.   609 

where E{.} is the expected value. Assuming that the signal and 
noise are zero-mean independent random processes and the in-
phase and quadrature components of the noise are independent, 
(6) and (7) reduce to 

M2 = S + N                  (8) 
and 

2 2
4 4 ,a wM k S SN k N= + +            (9) 

where { } { }24 2E Ea n nk a a= and { } { }24 2E Ew n nk w w= .  

Solving for S and N, we obtain 

( ) ( ) ( )2
2 2 42 4 4ˆ

4
w a w a w

a w

M k k k M M k k
S

k k

− ± − + + −
=

+ −
 (10) 

and 

2
ˆˆ .N M S= −                 (11) 

The estimator formed as the ratio of Ŝ  to N̂  is denoted as 
the M2M4 estimator. For any M-ary PSK signal, ka =1 and for 
complex noise, kw = 2, so that 

2 4
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3. SVR Estimator 

The SVR estimator, described by Brandão and others in [7], 
is a moment-based method developed to monitor channel 
quality in multipath fading channels, which can also be applied 
as a measure of channel quality in an AWGN channel. 

The SVR estimator is a function of the parameter 
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The term ( ){ }2*E n m y y  is M4 of the M2M4 method. The 

other term in (13) simplifies to 

{ }* * 2 2
1 1 2 .E n n n ny y y y S SN N− − = + +        (14) 

Writing S/N as ρ and substituting (9) and (14) into (13), the 
result is 

( ) ( )
2

2

2 1 ,
1 2 1a wk k

ρ ρβ
ρ ρ

+ +
=

− + + −
           (15) 

which may be solved for ρ to yield the general SVR estimator 
for the complex channel as 

( ),ˆ 1 1 ,SVR complexρ β β β= − + −         (16) 

 
where for M-ary PSK signal, ka =1 and for complex noise,   
kw = 2. 

For real signals, 
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where { }4E ny  is given by  

2 2
4 6 ,a wM k S SN k N= + +            (18) 

and { }2 2
1E n ny y −  simplifies to the same expression as (14). 

Substituting (18) and (14) into (17), and assuming ka = 1 and 
kw = 3 for BPSK-modulated signal in real AWGN, S/N is given 
by 

( ) ( ),ˆ 2 1 2 2 1 .SVR realρ β β β= − + −          (19) 

The previously discussed in-service SNR estimators will be 
used as benchmarks for comparison with the proposed 
technique. 

III. The Linear Prediction (LP)-Based Estimator  

In AWGN digital communication channels, consider the 
received signal at the front end of receiver as  

( ) ( ) ( ),x n s n w n= +              (20) 

where x(n) denotes the signal and w(n) the noise. Often, this 
additive noise is assumed to be zero mean AWGN and 
uncorrelated with the signal. In this case, the autocorrelation of 
the measured data, x(n), is given as  

( , ) ( , ) ( , )x s wr k l r k l r k l= + .         (21) 

Assuming x(n), a wide-sense stationary random process, the 
autocorrelation rx(k,l) depends only on the difference, m = k – l. 
Thus, (21) may be rewritten as 

( ) ( ) ( ).x s wr m r m r m= +            (22) 

Because a zero-mean AGWN w(n) models the 
nondeterministic part of (20), this process is uncorrelated with 
itself for all lags, except at m = 0, and its autocorrelation 
sequence (ACS) has the following form: 

2( ) ( ),wr m mσ δ=             (23) 

where σ2 is the variance of noise, and δ(m) is the discrete delta 
sequence. 
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Since the autocorrelation sequence of s(n) is a conjugate 
symmetric function of m, *( ) ( )s sr m r m= −  with the amplitude 
upper bounded by its value at m = 0. The noise part of (20), 
which tends to affect each sample in the time domain, confines 
its effect to the zero-offset sample in the second order statistics 
domain, making it possible to reduce the problem of noise 
variance estimation in AWGN systems to rs(0) estimation. 

Assume that we have (N+1)-point ACS rx(-N), rx(-N+1),…, 
rx(0),estimated from the received signal at the front end of 
digital receiver. Between the N+1 autocorrelation samples, the 
zero lag noise-free autocorrelation sample rs(0) is missing. The 
objective is to estimate rs(0) using the remaining N samples, 
thereby obtaining the power of additive noise which leads to 
the SNR value.  

Different techniques can be used to predict the value of rs(0) 
from the remaining N autocorrelation samples. Among the 
different prediction techniques, the modified-covariance 
technique remains among the best. Since the modified-
covariance method is well documented [8]-[10] a brief 
description is given here.   

Step 1. From the available autocorrelation sequence, the 
matrix of the forward linear prediction errors ef is given as 
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(24) 
where the ( )f

pa k are the forward linear prediction coefficients, 
and p is the order of forward predictor. Equation (24) can be 
written in a compact form as 

f f
p- .f f=e r R a                 (25) 

Step 2. In similar way to step 1, and in order to double the 
prediction errors, form the matrix of the backward linear 
prediction errors eb, given as 
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where the ( )b

pa k are the backward linear prediction 
coefficients, and p is the order of the backward predictor. 
Equation (26) can be written in compact form as                       

b b
p- .b b=e r R a                (27) 

Since ( )( ) ( )f b
p pa k a k∗= , (27) can be rewritten in terms of 

the forward prediction coefficient as  

- .b b b f
p

∗ ∗ ∗=e r R a                (28) 

Step 3. Because both directions have similar statistical 
information, it seems reasonable to combine the linear 
prediction error statistics of both forward and backward errors 
in order to generate more error points [8]. The net result should 
be an improved estimate of the predictor coefficients. The 
2×(N-p) forward and the 2×(N-p) backward linear prediction 
errors may be summarized concisely by the matrix-vector 
product: 
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Step 4. Obtain the predictor coefficients by solving (29) for 
the least squared error as follows. The average of the forward 
and backward linear prediction squared errors over the 
available data, is given by 

2 2
( ) ( ) .f b T

p p p
n n

e n e nρ = + =∑ ∑ e e        (30) 

By substituting (29) into (30), we may explicitly express the 
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dependence of the sum of squared errors on the predictor 
coefficients as  

T T f
p .TT T f f T f T

p p p pρ = − − +r r r R a a R r a R Ra    (31) 

Then, by differentiating (31) with respect to f
pa , we get the 

following gradient vector, given by 
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As it is clear that the sum of squared errors reaches its 
minimum value when the gradient vector is zero, from (32) we 
may deduce that 

f
p .T T=R R a R e                 (33) 

Thus, the predictor coefficients which give the least squared 
errors are obtained as a solution to (33). However, this solution 
is unique only when the nullity of the matrix R is zero [11]. In 
other words, the least-squares solution is unique, when the 
matrix R is of full rank. When this condition is satisfied, the 
matrix RTR is nonsingular and the solution is unique, given as 
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where R# is called the pseudoinverse of the matrix R, given as 

( ) 1# T T .
−

=R R R R             (35) 

Step 5. Use predictor coefficients and the prior p 
autocorrelation samples to zero-offset the autocorrelation value 
in order to predict the power of noiseless signal s(t) of (20): 

1
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= −∑             (36) 

Step 6. Find the power of AWGN as 2 (0) (0)x sr rσ = −  

and SNR estimation as 2

(0)sr
σ

. 

IV. Performance Comparisons 

The best SNR estimator is unbiased (or exhibits the smallest 
bias) and has the smallest variance. The statistical mean 
squared error (MSE) reflects both the bias and the variance of 
an SNR estimate and is given by 

{ }ˆMSE ρ ( ){ }2ˆE ρ ρ= − ,           (37) 

where ρ̂  is an estimate of the SNR, and ρ  is the true SNR.  

1.  Cramer-Rao Bound  

In order to assess the absolute performance of each estimator, 
the CRB is used as a reference. Thomas [12] derived Cramer-
Rao Bound the (CRB) for real channels, and based on [12] and 
[13], Pauluzzi and Beaulieu extended the derivation to complex 
channels [3]. The normalized CRB by 2ρ  for an unbiased 
SNR estimator in complex AWGN channel expressed in terms 
of the normalized MSE (NMSE) is given by  

{ }ˆNMSE ρ =
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sym ss sym

var
N N N
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where Nsym is the number of symbols, and Nss is the number of 
samples per symbol. The CRB for unbiased SNR estimators in 
real channels may be expressed in terms of the normalized 
MSE as 
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⎝ ⎠
      (39) 

It is necessary to emphasize here that the above formulas for 
CRB are derived for estimators operating on data collected at 
the input to the decision device.  

2. Results and Discussion 

Figures 1 and 2 compare the performance of the LP, SNV, 
M2M4, and SVR estimators for BPSK-modulated signal in a 
real AWGN channel. The performance of each estimator is 
calculated in terms of MSE normalized to true SNR value.  

Figure 1 shows the performance of the considered estimators 
with 64 symbols, collected at the input to the decision device 
for SNV, M2M4, and SVR and at the front-end of receiver for 
the LP estimator. Figure 2 shows the performance of the same 
SNR estimators but with Nsym = 512 symbols. 

 
 

Fig. 1. Normalized MSE with BPSK signals in real AWGN 
(Nsym = 64). 
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Fig. 2. Normalized MSE with BPSK signals in real AWGN
(Nsym = 512). 
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Fig. 3. Normalized MSE with 8-ary signals in complex AWGN
(Nsym = 64). 
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Fig. 4. Normalized MSE with 8-ary signals in complex AWGN
(Nsym = 512). 
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From Figs. 1 and 2, it is immediately apparent that for real 

digital communication channels, the NMSE curves of the LP 
estimator are significantly lower than those of other estimators. 
This better performance by the LP estimator is especially clear at 
SNR < 10 dB for Nsym = 64 and at SNR < 12 dB for Nsym = 512.  

Figures 3 and 4 compare the performance of the LP, SNV, 
M2M4, and SVR estimators for 8-ary signal in complex 
AWGN channel with Nsym = 64 and Nsym = 512, respectively. 
Figure 3 clearly shows that with a relatively small block of 
symbols, Nsym = 64, the LP outperforms other estimators up to 
nearly SNR = 15 dB and approaches their NMSE values as 
well as their CRB for higher values. In Fig. 4, where the 
simulation is run with a relatively large block of symbols, the 
LP shows a constant difference in performance from other in-
service estimators over the entire considered range of SNR 
values.    

V. Conclusion 

In contrast to other in-service SNR estimators that derive the 
SNR estimates solely from samples at the input to the decision 
device, a novel estimator was presented that can operate at the 
front-end and at the input to the decision device of the receiver. 
The performance of the proposed technique was tested and 
compared with other in-service estimators at different block 
lengths and with different types of modulation. The range of 
interest for the SNR extended between 0 dB and 25 dB. In the 
simulation, two types of modulation were used with block 
lengths of 64 and 512 symbols. The BPSK was used for the 
real communication channel and an 8-ary PSK was used for 
the complex channel. The results demonstrate that the 
proposed estimator achieves better performance in comparison 
to other estimators and prove its efficiency and reliability in 
estimating SNR. Since complexity is also a factor to consider, 
the developed estimator is relatively easy to implement. 
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