• Title/Summary/Keyword: Signal-interference-and-noise Ratio

Search Result 449, Processing Time 0.023 seconds

A Limit-Phase-Feedback-based Precoding Technique for CoMP (제한된 위상 피드백 기반의 CoMP를 위한 프리코딩 기법)

  • Kim, Tae-Young;Yoon, Eun-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.9A
    • /
    • pp.784-789
    • /
    • 2011
  • In this paper, a precoder based on limited phase feedback is proposed to maximize user's receive signal-to-interference-plus-noise ratio (SINR) in coordinated multi-point (CoMP) coordinated scheduling / coordinated beamforming (CS/CB) precoding matrix indicator (PMI) scenario. Most conventional precoding techniques based on limited phase feedback have been considered in a single-cell environment. However, considering neighboring cells in a multi-cell environment, we enhance the conventional preocoding. method. First, to maximize receive SINR, precoding matrices are designed to maximize the serving cell's signal and to minimize the coordinated cells' signal. Also, a precoder which can be used in a limited bit feedback condition is suggested. Finally, the proposed precoder's performance is evaluated and compared with some other precoding techniques by using simulation under the CoMP CS/CB PMI scenario.

Adaptive Frequency Resource Allocation For FFR Based Femtocell Network Environment (FFR 기반의 Femtocell 네트워크를 위한 적응 주파수 자원 할당 방법)

  • Bae, Won-Geon;Kim, Jeong-Gon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7B
    • /
    • pp.505-516
    • /
    • 2012
  • According to distribute of resource of macro cell and reduce distance between transmitter and receiver, Femto cell system is promising to provide costeffective strategy for high data traffic and high spectral efficient services in future wireless cellular system environment. However, the co-channel operation with existing Macro networks occurs some severe interference between Macro and Femto cells. Hence, the interference cancellation or management schemes are imperative between Macro and Femto cells in order to avoid the decrease of total cell throughput. First, we briefly investigate the conventional resource allocation and interference cancellation scheme between Macro and Femto cells. So we found that cell throughput and frequency reuse ware decreased Then, we propose an adaptive resource allocation scheme based on the distribution of Femtocell traffic in order to increase the cell throughput and also maximize the spectral efficiency over the FFR (Fractional Frequency Reuse) based conventional resource allocation schemes. Simulation Results show that the proposed scheme attains a bit similar SINR (Signal to Interference Noise Ratio) distribution but achieves much higher total cell throughput performance distribution over the conventional resource allocation schemes for FFR and future IEEE 802.16m based Femtocell network environment.

Binary Nonlinear Joint Transform Correlator with Sinusoidal Iterative Filter in Spectrum Domain

  • Jeong, Man-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.357-362
    • /
    • 2010
  • The joint transform correlator (JTC) has been the best known technique for pattern recognition and identification. This paper proposes a new technique of fringe adjustment by adopting a sinusoidal amplitude-modulated iterative filter convolved with an interference fringe pattern in the joint power spectrum (JPS) domain. The comparison of our new technique and other techniques is presented to show that the newly proposed technique can successfully improve both the correlation peaks and the peak signal-to-noise ratio (PSNR). Simulated results of enhanced interference fringes are also presented.

Ordered Interference Alignment in MIMO Interference Channel with Limited Feedback (제한된 궤환 채널 기반 MIMO 간섭 채널에서의 순서화 된 간섭 정렬 기법 설계)

  • Cho, Sungyoon;Yang, Minho;Yang, Janghoon;Kim, Dong Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.10
    • /
    • pp.938-946
    • /
    • 2012
  • Interference alignment (IA) is a data transmission technique that achieves the maximum degrees-of-freedom (DoF) in the multiuser interference channel for high signal-to-noise ratios (SNRs). However, most prior works on IA are based on the unrealistic assumption that perfect and global channel-state information (CSI) is available at all transmitters and receivers. In this paper, we propose the efficient design of feedback framework for IA that substantially suppresses the feedback overhead. While the feedback overhead in the conventional IA quadratically increases with K, the proposed feedback scheme supports the sequential exchange of computed IA precoders between transmitters and receivers and reduces the feedback overhead that linearly scales with K. Moreover, we analyze the residual interference due to the quantization error in limited feedback and propose the ordered IA algorithm that selects IA pair to minimize the sum residual interference in given channel realizations.

Mutual Interference on Mobile Pulsed Scanning LIDAR

  • Kim, Gunzung;Eom, Jeongsook;Choi, Jeonghee;Park, Yongwan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.1
    • /
    • pp.43-62
    • /
    • 2017
  • Mobile pulse scanning Light Detection And Ranging (LIDAR) are essential components of intelligent vehicles capable of autonomous travel. Obstacle detection functions of autonomous vehicles require very low failure rates. With the increasing number of autonomous vehicles equipped with scanning LIDARs to detect and avoid obstacles and navigate safely through the environment, the probability of mutual interference becomes an important issue. The reception of foreign laser pulses can lead to problems such as ghost targets or a reduced signal-to-noise ratio. This paper will show the probability that any two scanning LIDARs will interfere mutually by considering spatial and temporal overlaps. We have conducted four experiments to investigate the occurrence of the mutual interference between scanning LIDARs. These four experimental results introduced the effects of mutual interference and indicated that the interference has spatial and temporal locality. It is hard to ignore consecutive mutual interference on the same line or the same angle because it is possible the real object not noise or error. It may make serious faults because the obstacle detection functions of autonomous vehicle rely on heavily the scanning LIDAR.

A Uplink Performance Analysis of GAS-CP-CDMA Communication System (GAS-CP-CDMA 통신 시스템의 상향링크 성능분석)

  • Lee, Seong-Min;Kim, Whan-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11A
    • /
    • pp.1079-1086
    • /
    • 2008
  • In this paper, we propose a Cyclic-Prefix Code Division Multiple Access system that uses Sequences with Good Autocorrelation property(GAS-CP-CDMA) and analyze the uplink signal-to-noise ratio performance of that system. Phase-shifted sequences are used for differentiating users. The signals of the GAS-CP-CDMA system experience no (or very little) interferences from co-cell signals because of the good autocorrelation property, but user signals of adjacent cells may yield interferences. The frequency reuse factor in the ordinary CDMA system is around 0.6 and the interference from adjacent cells is about 40 percent of the total interference in the conventional CDMA system. Our numerical analysis shows that the frequency reuse factor and user capacity versus signal-to-noise ratio of the GAS-CP-CDMA system are improved comparing to the conventional CDMA system. The uplink user capacity of the proposed system can be increased up to about twice of that of the conventional CDMA system.

A Detection Method for An OFDM Signal Distorted by I/Q Imbalance (I/Q 불균형에 의하여 왜곡된 OFDM 신호의 검출방식)

  • Park Kyung-won;Cho Yong-soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.1A
    • /
    • pp.37-45
    • /
    • 2005
  • In this paper, after analyzing the effect of I/Q imbalance in an OFDM system, the detection method of an OFDM signal distorted by I/Q imbalance is proposed. Also, the channel estimation and the pilot symbol design scheme are proposed for using the proposed detection method. Since I/Q imbalance in an OFDM system degrades the SIR and the BER(Bit Error Ratio) performance, the robust detection method is required for an OFDM system. the proposed detection method can effectively suppress the interference caused by I/Q imbalance using characteristics of an OFDM signal differently from the conventional method, and results in improving the SIR of a desired OFDM signal.

Reducing the Effects of Noise Light in a Visible Light Communication System Using Two Color LEDs (가시광통신 시스템에서 2색 LED를 이용한 잡음광의 영향 감소)

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.429-433
    • /
    • 2012
  • In this paper, we reduced the optical noise interference in a visible light communication system using two color LEDs. In the transmitter, the original and the inverted signals of the transmitted data modulated a red LED and a blue LED, respectively. In the receiver, a differential detector which is composed of two photodetectors and an optical red filter detected the mixed signal radiated from the two LEDs. In an environment that the optical noise from a fluorescent lamp exists, the signal-to-noise ratio in this system was improved by about 20dB compared to that in the conventional system which uses a single LED and a single photodetector.

Greedy Heuristic Resource Allocation Algorithm for Device-to-Device Aided Cellular Systems with System Level Simulations

  • Wang, Xianxian;Lv, Shaobo;Wang, Xing;Zhang, Zhongshan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1415-1435
    • /
    • 2018
  • Resource allocation in device-to-device (D2D) aided cellular systems, in which the proximity users are allowed to communicate directly with each other without relying on the intervention of base stations (BSs), is investigated in this paper. A new uplink resource allocation policy is proposed by exploiting the relationship between D2D-access probability and channel gain among variant devices, such as cellular user equipments (CUEs), D2D user equipments (DUEs) and BSs, etc., under the constraints of their minimum signal to interference-plus-noise ratio (SINR) requirements. Furthermore, the proposed resource-allocation problem can be formulated as the cost function of "maximizing the number of simultaneously activated D2D pairs subject to the SINR constraints at both CUEs and DUEs". Numerical results relying on system-level simulations show that the proposed scheme is capable of substantially improving both the D2D-access probability and the network throughput without sacrificing the performance of conventional CUEs.

Performance Analysis of AGC Applebaum Array for Multiple Narrowband Interference (다중의 협대역 간섭 신호에 대한 AGC Applebaum어레이의 성능 분석)

  • 윤동현;이규만;한동석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.6B
    • /
    • pp.1092-1099
    • /
    • 2000
  • An adaptive array system can effectively remove all received interferences by using adaptive algorithms even though the received signal condition is not known. The conventional adaptive array systems, however, cannot remove all interferences adaptively and converge very slowly when the eigenvalue spread of the input covariance matrix is large. In the paper, a new adaptive array system called an automatic gain controller (AGC) Applebaum array and its control algorithm are proposed to overcome the performance degradation of conventional Applebaum array in multiple interference conditions. The performance analysis of the proposed AGC Applebaum array is described under the condition of multiple narrowband interferences. Simulation results show the array output signal-to-noise ratio (SNR) of the AGC Applebaum array increases by 30dB compared to that of the conventional Applebaum array in the simulation condition. The gain of the AGC Applebaum array in the incident direction of a weaker interference is also shown to be lower than that of the conventional Applebaum array.

  • PDF